
XML programming in Java technology, Part 3
Skill Level: Introductory

Doug Tidwell
XML Evangelist
IBM

16 Jul 2004

This advanced tutorial covers more sophisticated topics for manipulating XML
documents with Java technology. Author Doug Tidwell shows you how to do tasks
such as generate XML data structures, manipulate those structures, and interface
XML parsers with non-XML data sources. As you'd expect, all of the examples are
based on open standards.

Section 1. Introduction

About this tutorial

In an earlier tutorial, I showed you the basics of XML parsing in the Java language. I
covered the major APIs (DOM, SAX, and JDOM), and went through a number of
examples that demonstrated the basic tasks common to most XML applications. The
second tutorial in the series covered parser features, namespaces, and XML
validation. This final tutorial looks at more difficult things that I didn't cover before,
such as:

• Building XML structures without an XML document

• Converting between one API and another (SAX events to DOM trees, for
example)

• Manipulating tree structures

Programming interfaces

As in the previous tutorials, I cover these APIs:

• The Document Object Model (DOM), Levels 1, 2, and 3

XML programming in Java technology, Part 3
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 1 of 30

http://www.ibm.com/developerworks/edu/x-dw-xml-i.html?S_TACT=105AGX06&S_CMP=TUT
http://www.ibm.com/developerworks/edu/x-dw-xjava2-i.html?S_TACT=105AGX06&S_CMP=TUT
http://www.ibm.com/legal/copytrade.shtml

• The Simple API for XML (SAX), Version 2.0

• JDOM

Although many of the sample programs I discuss here use JAXP (the Java API for
XML parsing), I won't discuss JAXP specifically in this tutorial.

About the examples

Most of the examples here work with the Shakespearean sonnet that appeared in
the previous tutorials. The structure of this sonnet is:

<sonnet>
<author>
<lastName>
<firstName>
<nationality>
<yearOfBirth>
<yearOfDeath>

</author>
<lines>
[14 <line> elements]

</lines>
</sonnet>

I'll use this sample document throughout this tutorial. Links to the complete set of
sample files are shown below:

• sonnet.xml

• sonnet.dtd

• ParseString.java

• DomBuilder.java

• JdomBuilder.java

• CsvToSax.java

• test.csv

• SaxToDom.java

• DomToSax.java

• DomSorter.java

• DomAttributes.java

• JdomSorter.java

• sonnetSorter.xsl

• DomThree.java

• DomTreePrinter.java

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 3
Page 2 of 30 © Copyright IBM Corporation 1994, 2005. All rights reserved.

sonnet.xml
sonnet.dtd
ParseString.java
DomBuilder.java
JdomBuilder.java
CsvToSax.java
test.csv
SaxToDom.java
DomToSax.java
DomSorter.java
DomAttributes.java
JdomSorter.java
sonnetSorter.xsl
DomThree.java
DomTreePrinter.java
http://www.ibm.com/legal/copytrade.shtml

• DomFour.java

• SaxKiller.java

As an alternative, you can download x-java3_codefiles.zip to view these files in a
text editor.
In addition to the sonnet, you'll also learn how to parse files of comma-separated
values and text strings, including several approaches to converting that information
into XML or XML data structures.

Setting up your machine

You'll need to set up a few things on your machine before you can run the examples.
(I'm assuming that you know how to compile and run a Java program, and that you
know how to set your CLASSPATH variable.)

1. First, visit the home page of the Xerces XML parser at the Apache XML
Project (http://xml.apache.org/xerces2-j/). You can also go directly to the
download page (http://xml.apache.org/xerces2-j/download.cgi).

2. Unzip the file that you downloaded from Apache. This creates a directory
named xerces-2_5_0 or something similar, depending on the release
level of the parser. The JAR files you need (xercesImpl.jar and
xml-apis.jar) should be in the Xerces root directory.

3. Visit the JDOM project's Web site and download the latest version of
JDOM (http://jdom.org/).

4. Unzip the file you unloaded from JDOM. This creates a directory named
jdom-b9 or something similar. The JAR file you need (jdom.jar)
should be in the build directory.

5. Finally, download the zip file of examples for this tutorial,
x-java3_codefiles.zip, and unzip the file.

6. Add the current directory (.), xercesImpl.jar, xml-apis.jar, and
jdom.jar to your CLASSPATH.

Section 2. Building XML structures from scratch

Parsing a string

Sometimes you might want to parse an XML string. Typically, a parser works with an
XML document stored in a file. If another component sends you a string containing
an XML document, you don't want to write the string out to a file and then read the

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 3
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 3 of 30

DomFour.java
SaxKiller.java
x-java3_codefiles.zip
http://xml.apache.org/xerces2-j/
http://xml.apache.org/xerces2-j/download.cgi
http://jdom.org/
x-java3_codefiles.zip
http://www.ibm.com/legal/copytrade.shtml

file back in and parse it. What you want to do instead is invoke the parser against
the string itself.
The trick is to convert the Java String into an org.xml.sax.InputSource. The
parser -- whether it's DOM-based or SAX-based (whether it uses JAXP's
DocumentBuilder or SAXParser) -- can take the InputSource and parse it just
like any other markup. To convert the String, the code is:

ParseString ps = new ParseString();
String markup = new String("<html><body><h1>" +

"This XML document was a " +
"string!" +
"</h1></body></html>");

InputSource iSrc = new InputSource(new StringReader(markup));
ps.parseAndPrint(iSrc);

Here, you create the InputSource from a StringReader, which you created from
the String. Within the parseAndPrint method, the code looks very similar to the
parsing samples in the previous tutorials:

public void parseAndPrint(InputSource xmlSource)
{
Document doc = null;

try
{
DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance();
DocumentBuilder db = dbf.newDocumentBuilder();
doc = db.parse(xmlSource);
if (doc != null)

DomTreePrinter.printNode(doc);
}

The only change is that this method takes InputSource as its input an instead of a
URL. To print the string, you use the
com.ibm.dw.xmlprogjava.DomTreePrinter class. The complete source code
is in the files ParseString.java and DomTreePrinter.java.

Building a DOM tree from scratch

In the earlier DOM applications, you got a DOM tree from the parser after it parsed
an XML file. Sometimes, you might want to create a DOM tree without an XML
source file. For example, you might need to convert the results of an SQL query into
a DOM tree, and then use a library of XML tools against the DOM tree.
The DomBuilder application does this. Although all of the nodes it builds are
hard-wired into the application, you can easily add your own code to generate the
nodes you want.
As you'd expect, you need to start by asking the factory object to create a
DocumentBuilder:

try
{

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 3
Page 4 of 30 © Copyright IBM Corporation 1994, 2005. All rights reserved.

ParseString.java
DomTreePrinter.java
http://www.ibm.com/legal/copytrade.shtml

DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();

DocumentBuilder docBuilder = dbf.newDocumentBuilder();
Document doc = docBuilder.getDOMImplementation().

createDocument("", "sonnet", null);
. . .

Start by creating a new DocumentBuilderFactory and a new
DocumentBuilder as before. Next, call
DocumentBuilder.getDOMImplementation() to get an instance of something
that implements the DOMImplementation interface. Use that object's
createDocument method to get a new Document object. (Note:
DOMImplementation is part of the Document Object Model, not JAXP.)
In this example, the three arguments to the createDocument method specify that
your new Document doesn't have a namespace, the root element name is sonnet,
and the Document doesn't have a DOCTYPE.

Using the DocumentElement

Now that you've created your Document, you need to add things to it. The code
sample below starts by getting the DocumentElement from the Document object.
The difference between the two is subtle but important: The Document object is the
entire structure that represents the parsed version of the XML document; the
DocumentElement is the root element that contains all of the XML markup.
(Comments can appear outside the root element of an XML document; those
comments would be in the Document object, but not the DocumentElement.) In
the sample XML file, the <sonnet> element contains the rest of the document.

. . .
Document doc = docBuilder.getDOMImplementation().
createDocument("", "sonnet", null);

Element root = doc.getDocumentElement();
root.setAttribute("type", "Shakespearean");

Element author = doc.createElement("author");

Element lastName = doc.createElement("lastName");
lastName.appendChild(doc.createTextNode("Shakespeare"));
author.appendChild(lastName);
. . .
Element yearOfDeath = doc.createElement("yearOfDeath");
yearOfDeath.appendChild(doc.createTextNode("1616"));
author.appendChild(yearOfDeath);

root.appendChild(author);
. . .

In this listing, you set the type attribute of the root element (<sonnet>), then you
create the <author> element. Throughout the code, the Document object is
used as a factory to create new Node s. Your code also has to create the
hierarchy of the document. To build the <author> element, you create the
<author> element itself, then you create the other elements contained in
<author> (<lastName>, <firstName>, and so forth). As you create the child

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 3
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 5 of 30

http://www.ibm.com/legal/copytrade.shtml

elements of <author>, you append them to the <author> element. When the
<author> element is complete, you append it to its parent, the <sonnet> element.
Finally, notice the awkwardness of adding text to an element. To create this markup:

<yearOfDeath>1616</yearOfDeath>

You have to create the <yearOfDeath> element, then create a text node
containing the text 1616, then append the text node to the <yearOfDeath>
element, then you can append the <yearOfDeath> element to the <author>
element. To add a text node to an element, there is no method like
Element.setText() as you might expect. Peculiarities like this are what led to the
creation of JDOM; I'll show you how to build an XML document with JDOM in just a
moment.

Running DomBuilder

To run this application, simply type java DomBuilder at the command line. You
should see output like this:

C:\adv-xml-prog>java DomBuilder
<?xml version="1.0" ?>
<sonnet type="Shakespearean"><author><lastName>Shakespeare
</last-name><firstName>William</firstName><nationality>Bri
tish</nationality><yearOfBirth>1564</yearOfBirth><yearOfDe
ath>1616</year-of-death></author><title>Sonnet 130</title>
<lines><line>My mistress' eyes are nothing like the sun,</
line><line>Coral is far more red than her lips red.</line>
<line>If snow be white, why then her breasts are dun,</lin
e><line>If hairs be wires, black wires grow on her head.<l

You don't have to include an XML file name, because the code builds the DOM tree
from scratch (in fact, that's the point of this example). As the output shows, you don't
have any whitespace nodes in your DOM tree because you haven't gone to the
trouble of putting them into the tree.
Later, in Generating SAX events from comma-separated values on page , I'll show
you how to generate SAX events from a variety of sources. For now, you can look at
DomBuilder.java for the complete source listing of DomBuilder.

Building a JDOM Document from scratch

Building a JDOM Document is, as you'd expect, much easier than the DOM version
of the task. As you may recall from JDOM's goals, creating the Document works
much the same as creating a Java object. Here's how the code starts:

public void buildDocument()
{
Element root = new Element("sonnet");
root.setAttribute("type", "Shakespearean");

Vector author = new Vector();
author.add(new Element("lastName").addContent("Shakespeare"));

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 3
Page 6 of 30 © Copyright IBM Corporation 1994, 2005. All rights reserved.

DomBuilder.java
http://www.ibm.com/legal/copytrade.shtml

author.add(new Element("firstName").addContent("William"));
author.add(new Element("nationality").addContent("British"));
author.add(new Element("yearOfBirth").addContent("1564"));
author.add(new Element("yearOfDeath").addContent("1616"));
root.addContent(new Element("author").setContent(author));

root.addContent(new Element("title").addContent("Sonnet 130"));

Notice how much simpler this code is. For example, when adding text to a node
using the DOM, you had to create a text node (using the document node as an
element factory), then make the text node a child of an element, then make that
element the child of another element, and so on. With JDOM, you can create a
Vector of elements, then use the setContent method to add everything in the
Vector as a child of some other element.
Once you've set the content of your root element, you can create a JDOM
Document object with it:

Vector lines = new Vector();

lines.add(new Element("line").
addContent("My mistress' eyes are nothing like the sun,"));

. . .
lines.add(new Element("line").
addContent("As any she belied with false compare."));

root.addContent(new Element("lines").setContent(lines));

Document doc = new Document(root,
new DocType("sonnet", "sonnet.dtd"));

try
{
XMLOutputter xo = new XMLOutputter(" ", true);
xo.output(doc, System.out);

}

As in the JDOM applications from the previous tutorials, you use an XMLOutputter
to write the document to the console. Notice that JDOM lets you create a DOCTYPE
declaration when you create the Document object.
For the complete source code, see JdomBuilder.java.

Generating SAX events from comma-separated values

The final SAX-generating example illustrates how to generate SAX events from a
non-XML data source. This technique is extremely useful. Any code that processes
data can fire SAX events from that data, allowing a SAX parser to treat that data as
an XML data source. The next section, Converting from one API to another, contains
an example called SaxToDom that converts SAX events into DOM objects;
combining the two techniques gives you an extremely flexible way to process many
different kinds of data.
In this example, the data source used is a file of comma-separated values, also
known as a CSV file. (Code that accesses a database through a JDBC driver would
also be a good example, but the database connection is more complicated.) You'll
use a Java StreamTokenizer to parse the files, then you'll generate the

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 3
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 7 of 30

JdomBuilder.java
section3.html
http://www.ibm.com/legal/copytrade.shtml

appropriate XML from the tokens found in the data.
Here are a few lines of the sample file, test.csv:

"000010","CHRISTINE","I","HAAS","A00","3978",19650101
"000020","MICHAEL","L","THOMPSON","B01","3476",19731010
"000030","SALLY","A","KWAN","C01","4738",19750405
"000050","JOHN","B","GEYER","E01","6789",19490817

This listing was generated from a SQL query, with each line in the file containing
seven data fields. Use the following XML element names to wrap this data:

static String tagNames[] = {"employeeNumber",
"firstName",
"middleInitial",
"lastName",
"deptNo",
"extension",
"dateOfBirth"};

CSV to SAX, continued

To start, set up the StreamTokenizer:

BufferedReader br = new BufferedReader(new FileReader(uri));
StreamTokenizer st = new StreamTokenizer(br);

st.eolIsSignificant(true);
st.whitespaceChars(',', ',');
st.quoteChar('"');

This defines the properties of the StreamTokenizer. Now define three character
arrays that you'll use to pretty-print the XML output:

char [] lineBreak = new String("\n").toCharArray();
char [] singleIndent = new String(" ").toCharArray();
char [] doubleIndent = new String(" ").toCharArray();

As you parse the items in the CSV file, go through the following steps:

1. Fire the startDocument event.

2. Fire the startElement event for the <employees> element.

3. For each row, do the following:

A. Fire the startElement event for the <employee> element.

B. Loop through all of the tokens in this row. You'll use your static
array of tag names to generate the XML elements; for example, the

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 3
Page 8 of 30 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

first element will be <employeeNumber>, the second will be
<firstName>, and so forth. For each token, fire startElement
for the element, fire characters for the text, then fire
endElement.

C. Fire the endElement event for the <employee> element.

4. Fire the endElement event for the <employees> element.

5. Fire the endDocument event.

I'll show you this code in more detail next.

Firing the SAX events

First of all, fire the startDocument event. You know you're going to wrap the entire
XML document in an <employees> element, so you can go ahead and fire
startElement. After processing the entire document, you'll fire the endElement
event for the <employees> element. Here's the code:

dh.startDocument();
dh.startElement(null, null, "employees", null);
dh.ignorableWhitespace(lineBreak, 0, lineBreak.length);

(Notice that the ignorableWhitespace event is fired to add a line break to the
output.)
At this point, you should set up nested while loops to process the rows of the file.
The outer while loop executes until the StreamTokenizer returns a type equal to
the end-of-file marker (StreamTokenizer.TT_EOF). For each iteration through
the loop, call startElement for the <employee> element, process all of the items
in the current line of the source file, then call endElement for <employee>. The
inner loop processes each line until StreamTokenizer finds either the end-of-line
marker (TT_EOL) or the end-of-file marker (TT_EOF). Here's the first section of
the code:

st.nextToken();
while (st.ttype != StreamTokenizer.TT_EOF)
{
dh.ignorableWhitespace(singleIndent, 0, singleIndent.length);
dh.startElement(null, null, "employee", null);
dh.ignorableWhitespace(lineBreak, 0, lineBreak.length);

int i = 0;
while (st.ttype != StreamTokenizer.TT_EOL &&

st.ttype != StreamTokenizer.TT_EOF)
{

Notice that you're using the variable i to count how many elements the tokenizer
has found. Use this to retrieve the element name from the array discussed earlier.

The StreamTokenizer class

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 3
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 9 of 30

http://www.ibm.com/legal/copytrade.shtml

Before I continue, a few words about how the StreamTokenizer class works. The
first time you use the class, you need to call the nextToken method. That method
tells the tokenizer to find the next token in the file (in this case, the first one). At that
point, you can get that token from the tokenizer object by using the nval field for
numeric values and by using the sval field for string values. You also use the
ttype field to determine the token's type. The code for converting a numeric token
to a series of SAX events is:

if (st.ttype == StreamTokenizer.TT_NUMBER)
{
char [] chars = BigInteger.valueOf((long)st.nval).

toString().toCharArray();
dh.ignorableWhitespace(doubleIndent, 0, doubleIndent.length);
dh.startElement(null, null, tagNames[i], null);
dh.characters(chars, 0, chars.length);
dh.endElement(null, null, tagNames[i]);
dh.ignorableWhitespace(lineBreak, 0, lineBreak.length);

}

Java's BigInteger class is used here to handle the very large values that can
appear in comma-separated files. (For example, dates from relational databases are
often encoded as eight-digit numbers.) Convert the numeric value to a character
array, then invoke the appropriate SAX events.
At the end of the inner loop, increment the counter (i) and call the
StreamTokenizer.nextToken method to advance the tokenizer. When the inner
loop ends, invoke endElement for the <employee> element. When the outer loop
ends, invoke endElement for the <employees> element, followed by the
endDocument event:

st.nextToken();
i++;

}

dh.ignorableWhitespace(singleIndent, 0, singleIndent.length);
dh.endElement(null, null, "employee");
st.nextToken();
dh.ignorableWhitespace(lineBreak, 0, lineBreak.length);

}

dh.endElement(null, null, "employees");
dh.ignorableWhitespace(lineBreak, 0, lineBreak.length);
dh.endDocument();

}

Using this technique, you've now converted a comma-separated data stream into a
series of SAX events that represent that data as if it were an XML document. You
can use this approach for any kind of structured or semi-structured data.
You can see the complete source code in CsvToSax.java. The sample data file is in
test.csv.

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 3
Page 10 of 30 © Copyright IBM Corporation 1994, 2005. All rights reserved.

CsvToSax.java
test.csv
http://www.ibm.com/legal/copytrade.shtml

Section 3. Converting from one API to another

Converting SAX events to DOM trees

Typically an XML application uses DOM or SAX, however sometimes you might
want to use both interfaces together. For example, suppose you have a reporting
system that generates invoices for 10,000 customers. Those invoices are created as
a single XML file containing 10,000 <invoice> elements. To process each
<invoice>, you want to use a DOM tree. Unfortunately, you don't have a machine
with enough memory to create a DOM tree with potentially millions of objects
representing those 10,000 invoices.
For this example, you could use a hybrid approach. To parse the XML file with a
SAX parser, use all of the SAX events for a given <invoice> to build a DOM tree.
When you get a startElement event for an <invoice> element, you create a
new DOM tree. As your code receives SAX events, you add the appropriate Node s
to the DOM tree. When you get an endElement event for the <invoice>, pass the
DOM tree to your invoice-processing routine. When you've processed the current
<invoice>, you can delete the DOM tree and start over with a new set of SAX
events.

Mapping SAX events to DOM objects

To convert SAX events into a DOM tree, consider the most common SAX events:
startDocument

It's reasonable to think you'd use this event to ask your DocumentBuilder
object to create a Document. Unfortunately, startDocument doesn't tell you
the name of the root element, so you have to do that in the startElement
handler.

startElement
You have to handle two cases of startElement:

• If this is the first startElement event (in other words, it's the root
element), use your DocumentBuilder object to create a new
Document. The information in the startElement event tells you the
name of the root element, among other things, so you'll use that
information to set the root element's name.

• If this isn't the first startElement event, use the Document object to
create a new Element. Any attributes contained in the startElement
event are added to the new Element. When you're finished, put the new
Element on a stack.

characters
For the characters event, create a new Text node and append it as a child
of the node on the top of your stack.

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 3
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 11 of 30

http://www.ibm.com/legal/copytrade.shtml

ignorableWhitespace
If you want to include whitespace in the DOM tree, create a new Text node
that contains the whitespace. As with ordinary character events, you can
append it to the node on the top of the stack.

endElement
The endElement means the parser has found the end of an element. That
means you need to pop the complete element off the stack, then add it as a
child of the element that's now at the top of the stack. (To avoid an
EmptyStackException, make sure that a parent element is on the stack.)

endDocument
Ignore this event. After you process the final endElement event, the stack will
contain a single item, the root element of the document.

Next, I'll show you the event handlers in SaxToDom and demonstrate how you can
create DOM objects as SAX events arrive.

Using a stack

I mentioned earlier that SAX events are stateless. A given characters event
merely tells you that the parser found some characters in the document; it doesn't
tell you anything about the element that contains those characters. If you need that
information (and you often do), you have to keep track of it yourself.
As you get events from the SAX parser, you can convert each event into the
appropriate type of DOM Node. Once you've created the Node, you need to know its
parent. The most efficient way to do this is with a stack -- specifically
java.util.Stack. Process the different DOM Node types as follows:

• For an Element node, when you create it, put it on the top of the stack.
When you have the complete element (when you receive the
endElement event), pop the element off the stack and append it to the
element now on the top of the stack.

• For a Text node, create it and append it as a child of the element on top
of the stack. You create Text nodes in response to both characters
and ignorableWhitespace events.

In both cases, the peek() method of the java.util.Stack class lets you append
the text node without having to pop the element off the stack first.
In your code, you're ignoring other node types such as ProcessingInstruction
and Comment. If you were creating those node types, you would simply append
them to the element on the top of the stack. (If you implement this, be aware that
comments and processing instructions can occur outside the root element.)

The startElement event handler

To handle the startElement event, you usually create a new DOM Element and
put it on the stack. However, this situation has an extra complication: For the first
startElement event, you need to create a new DOM Document object. All of the
other DOM objects you create will be descendants of the Document object. Here's

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 3
Page 12 of 30 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

the code:

if (firstElementNotFoundYet)
{
root = docBuilder.getDOMImplementation().
createDocument(namespaceURI, rawName, null);

Element docElement = root.getDocumentElement();
if (attrs != null)
{
int len = attrs.getLength();
for (int i = 0; i < len; i++)

docElement.setAttribute(attrs.getQName(i),
attrs.getValue(i));

}

elementStack = new Stack();
elementStack.push(docElement);
firstElementNotFoundYet = false;

}
else
{
Element currentElement = root.createElement(rawName);
if (attrs != null)
{
int len = attrs.getLength();
for (int i = 0; i < len; i++)

currentElement.setAttribute(attrs.getQName(i),
attrs.getValue(i));

}
elementStack.push(currentElement);

}

The method calls here -- such as createDocument(), getDocumentElement(),
and createElement() -- are the same ones you used in DomBuilder. The main
difference in the processing here is the use of the elementStack to keep track of
the latest Element you've created.

The characters and ignorableWhitespace event handlers

You can handle these events by creating a new text node and adding it to the
Element on top of the stack. You can use the Stack.peek() method to access
the top item on the stack without actually removing it. These two event handlers are
coded as:

public void ignorableWhitespace(char ch[], int start, int length)
{
characters(ch, start, length);

}

public void characters(char ch[], int start, int length)
{
((Element) elementStack.peek()).
appendChild(root.createTextNode(new String(ch, start, length)));

}

The ignorableWhitespace event handler merely calls the characters event
handler. In the characters event handler, you can use the peek() method to

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 3
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 13 of 30

http://www.ibm.com/legal/copytrade.shtml

access the item on the top of the stack. Notice that you have to cast the item to an
Element; the peek() method returns a Java Object. You can then create a new
text node and append it to the Element on the top of the stack.

The endElement event handler

To handle the endElement event, you need to remove the item on the top of the
stack and append it to the item that was previously beneath it. The one exception to
this is the endElement event at the end of the document; for that event, the stack
will have only one item. Here's how the code looks:

public void endElement(String namespaceURI, String localName,
String rawName)

{
if (elementStack.size() > 1)
{
Element currentElement = (Element) elementStack.pop();
((Element) elementStack.peek()).appendChild(currentElement);

}
}

If the stack has more than one item on it, you can pop the current element off the
stack, then append it to the item that's now on top of the stack.
When you receive the final endElement event, a single root element is on top of the
stack. You can then pop the root element off the stack and process it.

Wrapping it all up

All that's left to do now is to create the parser object that will parse the file and build
the DOM tree from the SAX events. The source of the parseAndPrint method is:

Document root = null; // global variable
. . .
public void parseAndPrint(String uri)
{
try
{
dbf = DocumentBuilderFactory.newInstance();
docBuilder = dbf.newDocumentBuilder();

SAXParserFactory spf = SAXParserFactory.newInstance();
SAXParser sp = spf.newSAXParser();
sp.parse(uri, this);

if (root != null)
printDomTree(root);

}
. . .

Here, you create a DocumentBuilder, which is used to create DOM objects. You
also create a SAXParser object to parse the XML file and generate SAX events.
When you run the sample, you will see:

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 3
Page 14 of 30 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

C:\adv-xml-prog>java SaxToDom sonnet.xml
<?xml version="1.0"?>
<!DOCTYPE sonnet SYSTEM "sonnet.dtd">
<sonnet type="Shakespearean">
<author>
<lastName>Shakespeare</lastName>
<firstName>William</firstName>
<nationality>British</nationality>
<yearOfBirth>1564</yearOfBirth>
<yearOfDeath>1616</yearOfDeath>

</author>
<title>Sonnet 130</title>
<lines>
<line>My mistress' eyes are nothing like the sun,</line>
. . .

For a complete listing of the source code, see SaxToDom.java.

Generating SAX events from a DOM tree

You've now seen how to create a DOM tree from SAX events. Next I'll show you
how to generate SAX events from a DOM tree. I'm showing you this for the sake of
completeness; I'm not sure why anybody would need to do this. (If you think of a use
for this technique, please let me know.)
First, take a look at the mapping between nodes in a DOM tree and SAX events:
DOCUMENT_NODE

Call startDocument(), then process everything in the document node, then
call endDocument(). To process everything in the document, use the
recursive technique that was used throughout the DOM examples.

ELEMENT_NODE
Now take a look at the element to gather any attributes it has; you'll need those
when you call startElement(). After you call startElement(), you'll
process all of the element's children, then call endElement().

TEXT_NODE
For this node type, you simply create a char array that contains the node's
value.

The other major task is that your code has to implement the DefaultHandler
interface. That interface defines the SAX event handlers. As your code traverses the
DOM tree, you'll create SAX events and send them to yourself.
Next, I'll show you the code.

Creating SAX events

I've defined how you're going to map DOM nodes to the various SAX event types, so
now it's time to take a look at the code. The steps you'll go through are:

1. Create a DOM parser.

2. Parse the file to create a DOM tree.

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 3
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 15 of 30

SaxToDom.java
mailto:dtidwell@us.ibm.com
http://www.ibm.com/legal/copytrade.shtml

3. Walk through the DOM tree, converting the DOM nodes to the appropriate
SAX events.

4. As the SAX events are fired, use the SAX-printing routines you developed
earlier to print the SAX events. As the SAX events are fired, use the
SAX-printing routines from the first tutorial in this series. See the source
code in DomToSax.java for the details.

The code for steps 1 and 2 is:

try
{
dbf = DocumentBuilderFactory.newInstance();
db = dbf.newDocumentBuilder();
doc = db.parse(uri);
if (doc != null)
generateSAXEvents(doc, this);

}

Next, I'll go through the three node types handled in the DomToSax class.

Creating SAX events, continued

First, take a look at the DOCUMENT_NODE handler:

case Node.DOCUMENT_NODE:
{
dh.startDocument();
generateSAXEvents(((Document)node).getDocumentElement(), dh);
dh.endDocument();
break;

}

Fire the startDocument event, call the routine recursively to process the
document element, then fire the endDocument event.
An ELEMENT_NODE is handled similarly to a DOCUMENT_NODE, with the exception
that you need to process the attributes of the DOM element before you can fire the
startElement event. startElement requires that you pass an object that
implements the Attributes interface, along with the element name. Here's the
code:

case Node.ELEMENT_NODE:
{
AttributesImpl saxAttrs = new AttributesImpl();
if (node.hasAttributes())
{
NamedNodeMap attrs = node.getAttributes();
for (int i = 0; i < attrs.getLength(); i++)

saxAttrs.addAttribute(null, null,
attrs.item(i).getNodeName(),
null, attrs.item(i).getNodeValue());

}

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 3
Page 16 of 30 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/developerworks/edu/x-dw-xml-i.html?S_TACT=105AGX06&S_CMP=TUT
DomToSax.java
http://www.ibm.com/legal/copytrade.shtml

dh.startElement(null, null, node.getNodeName(), saxAttrs);

if (node.hasChildNodes())
{
NodeList children = node.getChildNodes();
for (int i = 0; i < children.getLength(); i++)

generateSAXEvents(children.item(i), dh);
}

dh.endElement(null, null, node.getNodeName());
break;

}

Similar to the way you handled the document node, you now fire startElement,
invoke the routine recursively, then fire the endElement event.
The final (and simplest) case handles a TEXT_NODE. The getNodeValue method
of a text node returns a Java String; convert that to an array of characters (char
), then fire the characters event:

case Node.TEXT_NODE:
{
char[] chars = node.getNodeValue().toCharArray();
dh.characters(chars, 0, chars.length);
break;

}

Notice that you don't have to handle ignorable whitespace differently because DOM
doesn't distinguish between whitespace and other text nodes. If you wanted to
process them separately, you have more work to do.
Running this code with the command java DomToSax sonnet.xml returns the
same results you'd expect, based on the earlier examples. The complete source
code is in DomToSax.java.

Section 4. Manipulating tree structures

Manipulating a DOM tree

The Document Object Model provides a number of methods for adding, moving, and
deleting nodes in a DOM tree. To illustrate how this works, I'll show you an
application that sorts the 14 <line> elements. In sorting these elements, you'll need
to move nodes from one place to another in the DOM tree.
Because a sonnet has only 14 lines, you should use a bubble sort to put them in
order. While this code works perfectly for the sample document, I'll show you some
shortcuts to take along the way. (As an exercise, feel free to make this code more
robust.)
For starters, you need to get all of the <line> elements in the DOM tree.
Fortunately, the Document and Element interfaces contain the

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 3
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 17 of 30

DomToSax.java
http://www.ibm.com/legal/copytrade.shtml

getElementsByTagName method. Given a tag name, this method returns a
NodeList with all the elements with that tag name. The body of the code is:

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
dbf.setIgnoringElementContentWhitespace(true);
DocumentBuilder db = dbf.newDocumentBuilder();

doc = db.parse(uri);
if (doc != null)
{
NodeList theLines = doc.getDocumentElement().

getElementsByTagName("line");
sortLines(theLines);
DomTreePrinter.printNode(doc);

}

The first few lines are the standard DOM parsing code you've used before. Next,
getElementsByTagName is used to get a NodeList of the <line> elements;
pass that to the sortLines method. After the lines of the sonnet have been sorted,
you use the DomTreePrinter class to print out the updated DOM tree.
Notice that you don't pass the DOM tree to the sortLines method. As long as your
Document object hasn't been garbage-collected, you can start with any of the nodes
in the NodeList and find that node's parent, that node's siblings, that node's
children, and so forth. That means you can start with a node, look at its next sibling
(the next <line> element), and compare the text of those elements. If you need to
swap the two, you can use DOM functions to tell the parent of those nodes to move
one node in front of another.

...or is the DOM tree manipulating you?

Now things get more difficult. Conceptually, the bubble sort isn't complicated; the
problem is getting the text of a given node. You might think that the getNodeValue
method would do what you want, but that's not the case. According to the DOM
standard, the value of an Element node is null. To get the text of a given <line>,
you need to get all of its Text node children. When you call getNodeValue with a
Text node, what you get back is the text you're looking for.
To make the code more readable, use the getTextFromLine method to extract
the text you need:

public String getTextFromLine(Node lineElement)
{
StringBuffer returnString = new StringBuffer();

if (lineElement.getNodeName().equals("line"))
{
NodeList kids = lineElement.getChildNodes();
if (kids != null)

if (kids.item(0).getNodeType() == Node.TEXT_NODE)
returnString.append(kids.item(0).getNodeValue());

}
else
returnString.setLength(0);

return new String(returnString);

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 3
Page 18 of 30 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

}

Actually, this code is cheating, because you only look at the first child node. That
works for the sample document, but you would have to do more work for more
sophisticated documents. (It might be legal to have a element inside a <line>,
for example.) This code uses the getNodeName method to make sure this is the
right kind of element, then it gets that node's children, then it makes sure the first
child of the node is a text node. Assuming all of those things are true, the method
returns the text of the element.

Sorting nodes

Your final task is to actually sort the nodes. Use the String.compareTo function
to find out which of two lines appears first in sorted order. If you need to swap the
two nodes, use the DOM insertBefore method. This method inserts one node in
front of another; best of all, if the node already exists in the DOM tree, it is moved to
the new location. Here's the code:

public void sortLines(NodeList theLines)
{
if (theLines != null)
{
int len = theLines.getLength();
for (int i = 0; i < len; i++)

for (int j = 0; j < (len - 1 - i); j++)
if (getTextFromLine(theLines.item(j)).

compareTo(getTextFromLine(theLines.item(j+1)))
> 0)

theLines.item(j).getParentNode().
insertBefore(theLines.item(j+1),
theLines.item(j));

}
}

Although this code looks confusing, it's really not that bad. The for loops handle the
bubble sort. The if statement compares the text of this line and the text of the next
line; if you need to swap them, you can use insertBefore. Notice that
getParentNode is used to get the parent of a node. Once you have the parent, you
tell the parent to move the next line before the current node.
You can see the complete source code in DomSorter.java.

Working with attributes

Manipulating the attributes of nodes in a DOM tree is very similar to the other
functions I've covered here. Several DOM methods work with attributes:
Node.getAttributes()

If this Node is an Element, this method returns a NamedNodeMap of the
element's attributes. If the Node is anything else, the method returns null.

Element.getAttribute(String name)
Returns the string value of the named attribute.

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 3
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 19 of 30

DomSorter.java
http://www.ibm.com/legal/copytrade.shtml

Element.getAttributeNode(String name)
Element.getAttributeNodeNS(String namespaceURI, String name)

These methods return an object that has the specified name (and namespace,
if specified) and implement the Attr interface.

Element.hasAttribute(String name)
Element.hasAttributeNS(String name)

These methods return true if the element has an attribute with the specified
name (and namespace, if specified).

Element.removeAttribute(String name)
Element.removeAttributeNS(String namespaceURI, String name)

These methods remove the attribute with the given name (and namespace, if
specified).

Element.removeAttributeNode(Attr oldAttr)
This one is confusing: The argument to the method is an object that
implements the Attr interface. You want the Element to remove the attribute
that matches this object. The method returns the object (the Attr) that was
removed. To complicate things further, if the attribute has a default value (in
other words, if the attribute has a value whether the XML document specifies it
or not), the deleted attribute is replaced with a new Attr that has the default
value.

Element.setAttribute(String name, String value)
Element.setAttributeNS(String namespaceURI, String name,
String value)

These methods add a new attribute with the specified name and value (and
namespace, if specified).

Element.setAttributeNode(Attr newAttribute)
Element.setAttributeNodeNS(Attr newAttribute)

These methods add the Attr object passed in as an argument. If the new
attribute replaces an existing attribute with the same name (and namespace, if
specified), these methods return the replaced object; otherwise, these methods
return null.

The code sample DomAttributes.java parses an XML file, then it uses the
Element.setAttribute method to add an attribute to every Element node in the
DOM tree. Its last task is to use the DomTreePrinter class to print out the
modified DOM tree.

Manipulating a JDOM tree

Now that you've manipulated a DOM tree, I'll show you how to do the same thing
with JDOM. As you'll see shortly, JDOM offers several convenient methods that
simplify the task, particularly when compared with the DOM version.
The code begins by scanning the command line, and then calling the
parseAndSortLines() method to parse and process the sonnet:

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 3
Page 20 of 30 © Copyright IBM Corporation 1994, 2005. All rights reserved.

DomAttributes.java
http://www.ibm.com/legal/copytrade.shtml

public static void main(String[] argv)
{
if (argv.length == 0 ||

(argv.length == 1 &&argv[0].equals("-help")))
// print message and exit

JdomSorter js = new JdomSorter();
js. parseAndSortLines(argv[0]);

}

public void parseAndSortLines(String uri)
{
try
{
SAXBuilder sb = new SAXBuilder();
Document doc = sb.build(new File(uri));
sortLines(doc);

The sortLines() method is where most of the actual work takes place. Pass your
entire document to this method; its first task is to get all of the <line> elements.
When you worked with the DOM, you used getElementsByTagName() to find all
of the elements you wanted. Once you had those elements, you could then use the
parent element (accessible through getParentNode()) to move the <line> s
around as needed.

More JDOM manipulations

The JDOM equivalents of getElementsByTagName() are getChild() and
getChildren(). The main conceptual difference between JDOM and DOM is that
JDOM only works with the children of an element, not its descendants. In other
words, you can't start at the root of the document and ask for all of the <line>
elements in the document; you have to find the <lines> element and ask for all of
its <line> children.
Because you know the structure of your XML document, you can get the <lines>
element pretty quickly. Here's how to do it:

public void sortLines(Document sonnet)
{

Element linesElement = sonnet.getRootElement().
getChild("lines");

List lines = linesElement.getChildren("line");

Given a Document object, ask for the root element (<sonnet>), then ask for its
child named <lines>. From there, ask for all of the <line> children of that
element. If you didn't know the exact structure of the document, you would have to
use the getChildren() method to get all of an element's children, select the
appropriate child element, then use getChildren() until you found the element
you wanted.
Notice that JDOM returns a List, part of the Java Collections API. One of the many
great things about the List interface is that any changes you make to the List are
reflected in the underlying data structure.

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 3
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 21 of 30

http://www.ibm.com/legal/copytrade.shtml

In JDOM, the bubble sort routine is:

for (int i = 0; i < 14; i++)
for (int j = 0; j < (14 - 1 - i); j++)
if (((Element)lines.get(j)).getText().

compareTo(((Element)lines.get(j+1)).getText())
> 0)
lines.add(j, lines.remove(j+1));

A couple of things are worth mentioning here. First of all, notice that JDOM provides
you with a getText() method to get the text of a given element. That means you
don't have to write a utility routine to get the text children of an element as you did
with DOM. Next, notice that you have to cast items in the List to be Element s.
When you need to swap two adjacent lines, you use the add() and remove()
methods together. Remove the line at position j+1, then insert it at position j.
One final point: Because the List interface lets you modify the underlying data
structure directly, your sortLines() method doesn't return anything. Changes you
make to the <lines> element are reflected in the Document object itself.

Outputting the results

Now that you've sorted the lines of the sonnet, your final task is to write it out. You'll
use an XMLOutputter along with several of its features that I haven't mentioned
before:

sortLines(doc);
XMLOutputter xo = new XMLOutputter();
xo.setTrimAllWhite(true);
xo.setIndent(" ");
xo.setNewlines(true);
xo.output(doc, System.out);

Tell the outputter to remove all extraneous whitespace with the
setTrimAllWhite() method, then use setIndent() and setNewlines() to
set up pretty-printing of your XML document. The results look like this:

C:\adv-xml-prog>java JdomSorter sonnet.xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sonnet SYSTEM "sonnet.dtd">
<sonnet type="Shakespearean">
<author>

. . .
<lines>
<line>And in some perfumes is there more delight</line>
<line>And yet, by Heaven, I think my love as rare</line>
<line>As any she belied with false compare.</line>
<line>But no such roses see I in her cheeks.</line>
<line>Coral is far more red than her lips red.</line>

. . .

The complete source code is in JdomSorter.java.

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 3
Page 22 of 30 © Copyright IBM Corporation 1994, 2005. All rights reserved.

JdomSorter.java
http://www.ibm.com/legal/copytrade.shtml

A final word about tree manipulation

Although it's beyond the scope of this tutorial, be aware that the simplest way to sort
the lines of a sonnet is with an XSLT stylesheet. XSLT provides the wonderful
<xsl:sort> element that does what you've done the hard way in the examples
here.
Here's the bulk of the stylesheet:

<xsl:template match="lines">
<lines>
<xsl:for-each select="line">

<xsl:sort/>
<xsl:copy>
<xsl:apply-templates select="*|@*|text()"/>

</xsl:copy>
</xsl:for-each>

</lines>
</xsl:template>

Again, I won't explain this stylesheet in any detail, but the template above does all
the work of sorting for you. When you find a <lines> element, you output a new
<lines> element, sort all the <line> elements inside it, then copy them to the
result document.
You can see the complete stylesheet in sonnetSorter.xsl.

Section 5. Advanced DOM features

Serializing a DOM tree

So far, you've used the printDomTree in the DOM examples. Now I'll show you
two other ways to print out (or serialize) a DOM tree. The first approach is to simply
move printDomTree to a separate class so you don't have to include this method
in the Java source code of every DOM application you create.
The second approach is to use the DOMSerializer class. This class is part of
DOM Level 3, but at this point it hasn't been added to the factory classes of JAXP. (
DOMSerializer may or may not be added to JAXP in the future, by the way.)
For the first approach, simply create a package named
com.ibm.dw.xmlprogjava and a class within that package named
DomTreePrinter. That class contains a single public static named
printNode. Here's how the code looks:

package com.ibm.dw.xmlprogjava;
. . .

public class DomTreePrinter
{

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 3
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 23 of 30

sonnetSorter.xsl
http://www.ibm.com/legal/copytrade.shtml

/** Prints the specified node, recursively. */
public static void printNode(Node node)
{
int type = node.getNodeType();
switch (type)
{

// print the document element
case Node.DOCUMENT_NODE:
{
System.out.println("<?xml version=\"1.0\" ?>");
printNode(((Document)node).getDocumentElement());
break;

}

The only change was to rename the method printNode instead of
printDomTree. For the complete source code, see DomThree.java and
DomTreePrinter.java.
You'll see how to create a DOMSerializer next.

Using an LSSerializer

The second way to write the DOM tree as an XML document is to use the
LSSerializer interface. This is part of the org.w3c.dom.ls package, which is
part of the DOM Level 3 Load and Save specification. Support for this
as-yet-unfinished standard in Xerces is likely to change, but the code that works as
of July 2004 is:

import org.apache.xerces.dom.DOMOutputImpl;
import org.w3c.dom.Document;
import org.w3c.dom.bootstrap.DOMImplementationRegistry;
import org.w3c.dom.ls.DOMImplementationLS;
import org.w3c.dom.ls.LSOutput;
import org.w3c.dom.ls.LSParser;
import org.w3c.dom.ls.LSSerializer;

. . .

public class DomFour
{
public void parseAndPrint(String uri)
{
Document doc = null;

try
{

System.setProperty(DOMImplementationRegistry.PROPERTY,
"org.apache.xerces.dom.DOMXSImplementationSourceImpl");

DOMImplementationRegistry direg =
DOMImplementationRegistry.newInstance();

DOMImplementationLS dils =
(DOMImplementationLS) direg.getDOMImplementation("LS");

LSParser lsp = dils.createLSParser
(DOMImplementationLS.MODE_SYNCHRONOUS, null);

doc = lsp.parseURI(uri);

LSSerializer domWriter = dils.createLSSerializer();
LSOutput lso = new DOMOutputImpl();
lso.setByteStream(System.out);

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 3
Page 24 of 30 © Copyright IBM Corporation 1994, 2005. All rights reserved.

DomThree.java
DomTreePrinter.java
http://www.ibm.com/legal/copytrade.shtml

domWriter.write(doc, lso);
}
catch (Exception e)
{

System.err.println("Sorry, an error occurred: " + e);
}

}

This code uses several classes specific to the Xerces implementation of the DOM
Level 3 interfaces. As of July 2004, this code only compiles and runs with a special
build of the Xerces parser. As the DOM Level 3 standard progresses and the Xerces
implementation becomes more mature, this code will almost certainly change. In the
code above, the classes DOMXSImplementationSourceImpl and
DOMOutputImpl are specific to the Xerces parser. For the complete (and
refreshingly short) source code, see DomFour.java.

Other DOM functions

Although you don't need them for the sonnet-sorting example, several other DOM
methods are useful when manipulating DOM trees. The most commonly-used
methods are:
appendChild(Node newChild)

Appends the node newChild as the last child of the parent node.

removeChild(Node oldChild)
Removes the node oldChild from the parent node.

replaceChild(Node newChild, Node oldChild)
Replaces oldChild with newChild. (Note: Both newChild and oldChild
must have been created by the same DocumentBuilder.)

Using a different DOM parser

Throughout the samples in this tutorial, you've used the Xerces parser. Technically,
though, almost all of the samples could use any other JAXP-compliant parser
without any changes. (The one exception is the DOMSerializer sample, which
uses DOM Level 3 classes not yet standardized by JAXP.) One goal of JAXP is to
allow you to change parsers without making any changes to your source code. JAXP
accomplishes this by loading a particular parser at runtime.
At runtime, JAXP determines the name of the class that implements the
DocumentBuilderFactory interface. JAXP looks for the class name in four
places (in this order):

1. The value of the javax.xml.parsers.DocumentBuilderFactory
property

2. The value of the javax.xml.parsers.DocumentBuilderFactory
property in the jre/lib/jaxp.properties file

3. In examining all of the JAR files in the CLASSPATH, the first value found

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 3
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 25 of 30

DomFour.java
http://www.ibm.com/legal/copytrade.shtml

in a
META-INF/services/javax.xml.parsers.DocumentBuilderFactory
file

4. The default DocumentBuilderFactory for the Java platform (in JDK
1.4, the default parser is
org.apache.crimson.jaxp.DocumentBuilderFactoryImpl)

You can specify the javax.xml.parsers.DocumentBuilderFactory property
in two ways. The first is by using the -D parameter from the command line:

java -Djavax.xml.parsers.DocumentBuilderFactory=[DBF class] . . .

The second is by adding the following code to your Java source before you create
the DocumentBuilderFactory:

System.setProperty("javax.xml.parsers.DocumentBuilderFactory",
"org.apache.xerces.jaxp.DocumentBuilderFactoryImpl");

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

Section 6. Advanced SAX features

Killing a SAX parser

When I first showed you a SAX parser, I noted that one of the advantages of using
SAX is that you get SAX events as the parser reads the XML file. When using a
DOM parser, you can only see a given element after the entire document has been
processed; with SAX, you see that element as soon as the parser does.
You can take this a step further by stopping the SAX parser when you find what
you're looking for. I'll show you how to create a fatal error that kills the parser, which
means the SAX parser won't even read the entire XML file.
In your parser-killing application, you'll look for the fourth <line> element in your
sonnet. When you find it, you'll create a SAXParseException, then call the
fatalError method. I'll show you that code next.

The search is on

Because SAX events are stateless, your code has to keep track of all the events that
you've seen. If you want to find the fourth <line> element, you know it starts with
the fourth startElement event for which the rawName is line. All of the
characters and ignorableWhitespace events that your parser gets while it's in
the fourth <line> element are part of the element's text, and when it finds the fourth

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 3
Page 26 of 30 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

endElement with a rawName of line, you know you have everything you're
looking for. At that point, create your exception and call fatalError.
First of all, use these three variables to manage state information:

int lineCount = 0;
boolean inFourthLine = false;
StringBuffer fourthLine = new StringBuffer();

Use lineCount to count how many <line> elements you've seen so far, set the
flag inFourthLine when you see the startElement event for the fourth <line>
element, and use fourthLine to store the text of the <line> element itself.
The startElement method looks like :

public void startElement(String namespaceURI, String localName,
String rawName, Attributes attrs)

{
if (rawName.equals("line") && ++lineCount == 4)

inFourthLine = true;
}

I'll show you the other event handlers next.

Handling other events

Now take a brief look at the other event handlers that the parser killer uses. First are
the characters and ignorableWhitespace handlers -- which merely check the
inFourthLine flag and store the text if the parser is in the fourth <line>:

public void characters(char ch[], int start, int length)
{
if (inFourthLine)
fourthLine.append(new String(ch, start, length));

}

public void ignorableWhitespace(char ch[], int start, int length)
{
if (inFourthLine)
characters(ch, start, length);

}

Now for the endElement handler. When your parser reaches the end of the fourth
<line>, print the text of the line, then create the exception to kill the parser:

public void endElement(String namespaceURI, String localName,
String rawName)

throws SAXException
{
if (rawName.equals("line") && inFourthLine)
{
System.out.println("\nThe text of the fourth line is: \n");
System.out.println("\t" + fourthLine);

SAXParseException spe =

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 3
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 27 of 30

http://www.ibm.com/legal/copytrade.shtml

new SAXParseException("Found the fourth <line>, " +
"so we killed the parser!",
new LocatorImpl());

fatalError(spe);
}

}

If you run SaxKiller, you should see something like this:

C:\xml-prog-java>java SaxKiller sonnet.xml

The text of the fourth line is:

If hairs be wires, black wires grow on her head.

The exception isn't written out because you catch it in the main method:

SaxKiller s1 = new SaxKiller();
try
{
s1.parseURI(argv[0]);

}
// We're expecting an exception, so we ignore
// anything that happens...
catch (Exception e) { }

See SaxKiller.java for the complete listing.

Using a different SAX parser

As you saw earlier, JAXP allows you to specify a different DOM parser at runtime; it
also allows you to specify a SAXParserFactory implementation at runtime. At
runtime, JAXP determines the name of the class that implements the
SAXParserFactory interface. In order, JAXP looks for the class name in these
four places:

1. The value of the javax.xml.parsers.SAXParserFactory property

2. The value of the javax.xml.parsers.SAXParserFactory property
in the jre/lib/jaxp.properties file

3. Looking through all of the JAR files in the CLASSPATH, the first value
found in a
META-INF/services/javax.xml.parsers.SAXParserFactory file

4. The default SAXParserFactory for the Java platform (in JDK 1.4, the
default parser is org.apache.crimson.jaxp.SAXParserFactory)

You can specify the javax.xml.parsers.SAXParserFactory property in two
ways. The first is by using the -D parameter from the command line:

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 3
Page 28 of 30 © Copyright IBM Corporation 1994, 2005. All rights reserved.

SaxKiller.java
http://www.ibm.com/legal/copytrade.shtml

java -Djavax.xml.parsers.SAXParserFactory=[SPF class name] . . .

The second is by adding the following code to your Java source before you create
the SAXParserFactory:

System.setProperty("javax.xml.parsers.SAXParserFactory",
"org.apache.xerces.jaxp.SAXParserFactoryImpl");

SAXParserFactory spf = SAXParserFactory.newInstance();

This code tells JAXP to use the Xerces parser from the Apache Software
Foundation.

Section 7. Summary and references

Summary

In this final installment of the XML programming in Java technology tutorial series, I
covered the more esoteric details of the DOM, SAX, and JDOM APIs. At this point,
you should know just about everything a parser can do. As you build your own XML
applications, I hope these methods and techniques make your life easier.

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 3
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 29 of 30

http://www.ibm.com/legal/copytrade.shtml

Resources

• For the complete examples, download x-java3_codefiles.zip.
Review the previous tutorials in this series:

• "XML programming in Java technology, Part 1" covers the basics of
manipulating XML documents using Java technology, and looks at the
common APIs for XML (developerWorks, January 2004).

• "XML programming in Java technology, Part 2" shows you how to do tasks
such as generate XML data structures, validate XML documents, work
with namespaces, and interface XML parsers with non-XML data sources (
developerWorks, July 2004).

Visit the DOM Technical Reports page at the W3C for links to all things
DOM-related. To view the individual specs, visit:

• Document Object Model Level 1

• DOM Level 2 Core

• DOM Level 3 Core

Read about SAX Version 2.0.
Learn all about JDOM at the JDOM project's home page.
If you want a refresher on the fundamentals of XML itself, read Doug's popular
"Introduction to XML" tutorial (developerWorks, August 2002).
Find more resources related to the technologies discussed here on the
developerWorks XML and Java technology zones.
Finally, find out how you can become an IBM Certified Developer in XML and
related technologies.

About the author

Doug Tidwell
In a multicenter, double-blind clinical test, Doug Tidwell was shown to provide
significant relief from seasonal allergy symptoms caused by programming with XML
and Java technologies.
Also available is slow-acting Doug Tidwell (Doug Tidwell SA), which delivers a
consistent dose of medication for up to 24 hours. Side effects of Doug Tidwell were
generally mild and included dizziness, moderate to severe nausea, numbness in the
extremities, and, in rare cases, paralysis and death.
Ask your doctor if Doug Tidwell is right for you.
For further details, consult Doug's blog.

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 3
Page 30 of 30 © Copyright IBM Corporation 1994, 2005. All rights reserved.

x-java3_codefiles.zip
http://www.ibm.com/developerworks/edu/x-dw-xml-i.html?S_TACT=105AGX06&S_CMP=TUT
http://www.ibm.com/developerworks/edu/x-dw-xjava2-i.html?S_TACT=105AGX06&S_CMP=TUT
http://www.w3.org/DOM/DOMTR
http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/2003/CR-DOM-Level-3-Core-20031107
http://sax.sourceforge.net/
http://www.jdom.org/
http://www.ibm.com/developerworks/edu/x-dw-xmlintro-i.html?S_TACT=105AGX06&S_CMP=TUT
http://www.ibm.com/developerworks/xml/
http://www.ibm.com/developerworks/java/
http://www.ibm.com/certify/certs/adcdxmlrt.shtml
http://www.ibm.com/certify/certs/adcdxmlrt.shtml
mailto:dtidwell@us.ibm.com?cc=dwxed@us.ibm.com
http://www.ibm.com/developerworks/blogs/dw_blog.jspa?blog=319
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Introduction
	About this tutorial
	Programming interfaces
	About the examples
	Setting up your machine

	Building XML structures from scratch
	Parsing a string
	Building a DOM tree from scratch
	Using the DocumentElement
	Running DomBuilder
	Building a JDOM Document from scratch
	Generating SAX events from comma-separated values
	CSV to SAX, continued
	Firing the SAX events
	The StreamTokenizer class

	Converting from one API to another
	Converting SAX events to DOM trees
	Mapping SAX events to DOM objects
	Using a stack
	The startElement event handler
	The characters and ignorableWhitespace event handlers
	The endElement event handler
	Wrapping it all up
	Generating SAX events from a DOM tree
	Creating SAX events
	Creating SAX events, continued

	Manipulating tree structures
	Manipulating a DOM tree
	...or is the DOM tree manipulating you?
	Sorting nodes
	Working with attributes
	Manipulating a JDOM tree
	More JDOM manipulations
	Outputting the results
	A final word about tree manipulation

	Advanced DOM features
	Serializing a DOM tree
	Using an LSSerializer
	Other DOM functions
	Using a different DOM parser

	Advanced SAX features
	Killing a SAX parser
	The search is on
	Handling other events
	Using a different SAX parser

	Summary and references
	Summary

	Resources
	About the author

