
XML programming in Java technology, Part 2
Skill Level: Introductory

Doug Tidwell (dtidwell@us.ibm.com)
XML Evangelist
IBM

09 Jul 2004

This advanced tutorial covers more sophisticated topics for manipulating XML
documents with Java technology. Author Doug Tidwell shows you how to do tasks
such as generate XML data structures, validate XML documents, work with
namespaces, and interface XML parsers with non-XML data sources. As you'd
expect, all of the examples are based on open standards.

Section 1. Introduction

About this tutorial

In an earlier tutorial ("XML programming in Java technology, Part 1"), I showed you
the basics of XML parsing in the Java language. I covered the major APIs (DOM,
SAX, and JDOM), and went through a number of examples that demonstrated the
basic tasks common to most XML applications. This tutorial will look at more difficult
things that weren't covered before, such as:

• Getting and setting parser features

• Working with namespaces

• Validating XML documents

As in the introductory tutorial, the APIs I'll cover are:

• The Document Object Model (DOM), Levels 1, 2, and 3

• The Simple API for XML (SAX), Version 2.0

• JDOM, a simple Java API created by Jason Hunter and Brett McLaughlin

XML programming in Java technology, Part 2
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 1 of 39

mailto:dtidwell@us.ibm.com
http://www.ibm.com/developerworks/edu/x-dw-xml-i.html?S_TACT=105AGX06&S_CMP=TUT
http://www.ibm.com/legal/copytrade.shtml

• The Java API for XML Processing (JAXP)

I'll also cover several approaches to validation, including W3C XML Schema, RELAX
NG, and Schematron.

About the examples

Most of the examples here will work with the Shakespearean sonnet that appeared
in the last tutorial. The structure of this sonnet is:

<sonnet>
<author>
<lastName>
<firstName>
<nationality>
<yearOfBirth>
<yearOfDeath>

</author>
<lines>
[14 <line> elements]

</lines>
</sonnet>

In the various sample programs, some versions of this document will have
namespaces, and some will use DTDs, W3C XML Schemas, or other schema
languages for validation. For the complete examples, see the following files:

• sonnet.xml

• sonnet.dtd (download to view in a text editor)

• sonnetNamespaces.xml

• sonnet.xsd

• sonnetSchema.xml

• sonnet.rng

• sonnetRules.xsl

• sonnetSchematron.xml

As an alternative, download x-java2_code_files.zip to view these files in a text editor.

Setting up your machine

You'll need to set up a few things on your machine before you can run the examples.
(I'm assuming that you know how to compile and run a Java program, and that you
know how to set your CLASSPATH variable.)

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 2
Page 2 of 39 © Copyright IBM Corporation 1994, 2005. All rights reserved.

sonnet.xml
sonnet.dtd
sonnetNamespaces.xml
sonnet.xsd
sonnetSchema.xml
sonnet.rng
sonnetRules.xsl
sonnetSchematron.xml
x-java2_code_files.zip
http://www.ibm.com/legal/copytrade.shtml

1. First, visit the home page of the Xerces XML parser at the Apache XML
Project (http://xml.apache.org/xerces2-j/). You can also go directly to the
download page (http://xml.apache.org/xerces2-j/download.cgi).

2. Unzip the file that you downloaded from Apache. This creates a directory
named xerces-2_5_0 or something similar, depending on the release
level of the parser. The JAR files you need (xercesImpl.jar and
xml-apis.jar) should be in the Xerces root directory.

3. Visit the JDOM project's Web site and download the latest version of
JDOM (http://jdom.org/).

4. Unzip the file you unloaded from JDOM. This creates a directory named
jdom-b9 or something similar. The JAR file you need (jdom.jar)
should be in the build directory.

5. Finally, download the zip file of examples for this tutorial,
x-java2_code_files.zip , and unzip the file.

6. Add the current directory (.), xercesImpl.jar, xml-apis.jar, and
jdom.jar to your CLASSPATH.

Section 2. Getting and setting parser features

Parser features

As XML has become more sophisticated, parsers have had to become more
sophisticated as well. DOM, SAX, and JDOM all define sets of parser features.
Some features are required, and some are optional. Each of the three APIs provide
similar methods and exceptions for getting and setting parser features.

For example, take a look at SAX. The SAX API itself defines methods to get and set
parser features in the XMLReader interface. JAXP provides those same methods in
the SAXParserFactory and SAXParser classes. Here's how that code works:

public static void checkFeatures()
{
try
{
SAXParserFactory spf = SAXParserFactory.newInstance();
spf.setFeature

("http://xml.org/sax/features/namespace-prefixes",
true);

if (!spf.getFeature

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 2
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 3 of 39

http://xml.apache.org/xerces2-j/
http://jdom.org/
x-java2_code_files.zip
http://www.ibm.com/legal/copytrade.shtml

("http://xml.org/sax/features/validation"))
spf.setFeature
("http://xml.org/sax/features/validation", true);

. . .
}

In addition to the getFeature() and setFeature() methods, JAXP defines
methods for working with the commonly-used namespace and validation features.
The SAXParserFactory class defines the setNamespaceAware() and
setValidating() methods to set those features on any SAXParser it creates. In
addition, both SAXParserFactory and SAXParser provide the
isNamespaceAware() and isValidating() methods.

Setting SAX parser features

I left out one detail about setting SAX features getFeature() and
setFeature() methods: handling exceptions. Whenever you're setting SAX parser
features, you should always catch two exceptions: SAXNotSupportedException
and SAXNotRecognizedException.

catch (SAXNotSupportedException snse)
{
System.out.println
("The feature you requested is not supported.");

}
catch (SAXNotRecognizedException snre)
{
System.out.println
("The feature you requested is not recognized.");

}

SAXNotSupportedException means that the parser recognizes the feature
you've requested, but doesn't support it, while SAXNotRecognizedException
means that the parser has never heard of the feature you're asking for.

SAX parser features

The SAX 2.0 standard requires that parsers recognize these two features:

http://xml.org/sax/features/namespaces
The parser recognizes namespaces: When this property is true, namespace
URIs and unqualified local names are available for all elements and attributes.
Any SAX 2.0-compliant parser must support the default value of true for this
property.

http://xml.org/sax/features/namespace-prefixes
The parser provides support for resolving namespace prefixes. When this

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 2
Page 4 of 39 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

property is true, namespace prefixes are available for elements and
attributes, including xmlns: attributes. Any SAX 2.0-compliant parser must
support the default value of false for this property.

One more point about these two required features: A parser is required to provide
get methods for them, but does not have to provide set methods.

To help you avoid SAXNotRecognizedException s, here is a list of
commonly-supported features. These are not defined in the SAX 2.0 standard (that
standard only defines the two required features). A SAX parser doesn't have to
support or recognize any of these features, and any given parser is free to add its
own features to this list.

http://xml.org/sax/features/external-general-entities
Determines whether the parser processes external general entities. This
feature doesn't have a default value, although if validation is turned on, this
feature will be true.

http://xml.org/sax/features/external-parameter-entities
Determines whether the parser processes external parameter entities. This
feature doesn't have a default value, although if validation is turned on, this
feature will be true.

http://xml.org/sax/features/is-standalone
This property defines whether the XML declaration contains
standalone="yes". It can't be changed, it can only be queried, and it can
only be queried after the startDocument event.

http://xml.org/sax/features/lexical-handler/parameter-entities
The SAX parser's LexicalHandler will report the beginning and end of
parameter entities.

http://xml.org/sax/features/resolve-dtd-uris
A value of true indicates that SYSTEM IDs used to define declarations will be
reported relative to the base URI of the document. false indicates that the IDs
will be reported as found in the document; programs can use the
Locator.getSystemId() method to get the document's base URI.

http://xml.org/sax/features/string-interning
If this property is true, all XML names and namespace URIs are interned
using java.lang.String.intern(). Using intern() makes string
comparison much faster than calls to java.lang.String.equals().

http://xml.org/sax/features/use-attributes2
http://xml.org/sax/features/use-locator2
http://xml.org/sax/features/use-entity-resolver2

A value of true indicates that the parser uses the updated interfaces
org.xml.sax.ext.Attributes2, org.xml.sax.ext.Locator2, or
org.xml.sax.ext.EntityResolver2, respectively.

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 2
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 5 of 39

http://www.ibm.com/legal/copytrade.shtml

http://xml.org/sax/features/validation
Specifies whether the parser is validating the document. If this feature is true,
external-general-entities and external-parameter-entities
are automatically set to true.

http://xml.org/sax/features/xmlns-uris
When the namespace-prefixes feature is set, this feature controls whether
namespace declarations are in namespaces themselves. The Namespaces in
XML spec states that namespace declarations are not to be in any namespace,
while the DOM Level 1 spec puts namespaces declarations into the
namespace http://www.w3.org/2000/xmlns/. When this feature is
true, namespace declarations are in a namespace; when the feature is
false, they aren't.

You can find a list of all the defined feature URIs at
saxproject.org/apidoc/org/xml/sax/package-summary.html.

A brief word about entities

A number of parser features deal with entities and how they are handled by the
parser. I'm including a brief summary of entities here in case you're not familiar with
them. In general, an entity defines a string that is replaced with something else when
the XML document is processed. The different types of entities are listed here.

General versus parameter entities: A general entity defines a substitution that is
used inside an XML document. A parameter entity, on the other hand, only appears
in a DTD, and defines a substitution that can only be used inside a DTD. (More on
DTDs later.) A general entity looks like this:

<!ENTITY corp "International Business Machines Corporation">

Using this entity, the string &corp; is replaced with the string International
Business Machines Corporation wherever it appears.

A parameter entity looks like this:

<!DOCTYPE article [
<!ENTITY % basic "a|b|code|dl|i|ol|ul|#PCDATA">
<!ELEMENT body (%basic;)*>

In this example, the parameter entity basic is associated with a particular string.
Assuming these are HTML elements, wherever you use the parameter entity
%basic;, that means an element can contain text (#PCDATA stands for "parsed
character data") or the elements <a>, , <code>, <dl>, <i>, , and .

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 2
Page 6 of 39 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/REC-DOM-Level-1
http://www.saxproject.org/apidoc/org/xml/sax/package-summary.html#package_description
http://www.ibm.com/legal/copytrade.shtml

Using this parameter entity throughout the DTD can save a lot of typing.

Internal versus external entities: An internal entity is defined in the XML file; an
external entity is defined in a different (external) file. The external file is most likely
another XML file, but it could be something else (more on that in a minute). The first
line here defines an internal entity, while the second defines an external entity by
using the SYSTEM keyword and a reference to an external file:

<!ENTITY auth "Doug Tidwell">
<!ENTITY BoD SYSTEM "http://www.ibm.com/board_of_directors.html">

Using these examples, the string &auth; will be replaced with the text Doug
Tidwell, while the string &BoD; will be replaced with the contents of the file
board_of_directors.html. The first entity here is an internal general entity, and
the second is an external general entity.

Predefined entities: The XML standard defines five entities that are always
available. They are the entities for the less-than sign (<), the greater-than sign
(>), the ampersand (&), the apostrophe or single-quote character (
'), and the double-quote character (").

Setting DOM parser features

JAXP's DocumentBuilderFactory has a smaller set of features than the
SAXParserFactory does. The most important methods are:

setValidating(boolean)
Sets the factory's validation property.

isValidating()
Returns true if the factory creates validating parsers, false otherwise.

setNamespaceAware(boolean)
Sets the factory's namespace-aware property.

isNamespaceAware()
Returns true if the factory creates namespace-aware parsers, false
otherwise.

setIgnoringElementContentWhitespace(boolean)
Sets the factory's whitespace property. If this is true, the parsers created by the
factory won't create nodes for the ignorable whitespace in the document.

isIgnoringElementContentWhitespace()
Returns true if the factory creates parsers that ignore whitespace, false
otherwise.

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 2
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 7 of 39

http://www.ibm.com/legal/copytrade.shtml

In addition to the above features, the following properties are rarely used:

setCoalescing(boolean) and isCoalescing()
The factory creates parsers that convert CDATA sections into text nodes. (
CDATA stands for "character data", and refers here to non-parsed text.)

setExpandEntityReferences(boolean) and
isExpandEntityReferences()

The factory creates parsers that expand entity reference nodes.

setIgnoringComments(boolean) and isIgnoringComments()
The factory creates parsers that ignore comments.

Section 3. An overview of namespaces

Namespaces introduction

When XML was first announced, frustrated HTML developers were thrilled with the
prospect of creating their own tags. Finally they could all create tags to describe their
data, rather than forcing their data to fit into the narrow structures of HTML.

Once the initial euphoria died down, it became obvious that things weren't quite that
simple; sooner or later two or more groups would define the same tag. For example,
I run an online bookstore, so I use the <title> tag for the title of a book. At your
business, you might store the addresses of all your customers in XML, using the
<title> tag for a customer's courtesy title.

To create an XML book order, it's perfectly reasonable for me to use my tags to
describe the books being ordered, and it's perfectly reasonable for you to use your
tags to describe the shipping address for the order. The obvious problem: How do
we distinguish between these two <title> tags? Namespaces are the answer.

Conceptually, a namespace works like a Java package statement. Two classes can
have the same name, as long as they're from two different packages. For example,
JDOM and DOM both define a Document class. To make it clear which class I want
to use, I combine the package name and the class name, as in
org.jdom.Document and org.w3c.dom.Document.

A namespace has two parts: A prefix and a unique string. Here's a fragment of a
document that uses namespaces:

<bookOrder xmlns:lit="http://www.literarysociety.org/books"
xmlns:addr="http://www.usps.com/addresses" >

. . .

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 2
Page 8 of 39 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

<lit:title>My Life in the Bush of Ghosts</lit:title>
. . .
<shipTo>
<addr:title>Ms.</addr:title>
<addr:firstName>Linda</addr:firstName>
<addr:lastName>Lovely</addr:lastName>
. . .

This document defines two namespaces. The lit prefix is associated with the string
http://www.literarysociety.org/books, and the addr prefix is associated
with the string http://www.usps.com/addresses. When you use a
<lit:title> or <addr:title> element, it's clear which <title> element you're
using.

More namespace details

When you define a namespace on a given element, that namespace can be used by
that element and every element inside it. In the previous example, I defined all the
namespaces I'm using on the root element of the document. I could have defined the
addr namespace on the <shipTo> element:

<shipTo xmlns:addr="http://www.usps.com/addresses">
<addr:title>Ms.</addr:title>
<addr:firstName>Linda</addr:firstName>
<addr:lastName>Lovely</addr:lastName>
. . .

If I wanted to type as much as possible, I could redefine the namespace on every
single element that uses it:

<shipTo>
<addr:title xmlns:addr="http://www.usps.com/addresses">
Ms.

</addr:title>
<addr:firstName xmlns:addr="http://www.usps.com/addresses">
Linda

</addr:firstName>
<addr:lastName xmlns:addr="http://www.usps.com/addresses">
Lovely

</addr:lastName>
. . .

Whenever a namespace prefix is used, the namespace associated with that prefix
has to be defined on that element or one of its ancestors. Defining all of the
namespaces on the root element simplifies and shortens the document.

A final technique is to use the xmlns attribute without defining a prefix at all. This
defines the default namespace for the current element and any descendant

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 2
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 9 of 39

http://www.ibm.com/legal/copytrade.shtml

elements that don't have a namespace prefix. I could have coded the <title>
element like this:

<title xmlns="http://www.literarysociety.org/books">
My Life in the Bush of Ghosts

</title>

In a moment, I'll show you a namespace-qualified version of the XML sonnet. If you
wanted, you could use a default namespace for the <author> element:

<author
xmlns="http://www.literarysociety.org/authors">
<lastName>Shakespeare</lastName>
<firstName>William</firstName>
<nationality>British</nationality>
<yearOfBirth>1564</yearOfBirth>
<yearOfDeath>1616</yearOfDeath>

</author>

Because none of these elements has a namespace prefix, a namespace-aware
parser will report all of these elements as belonging to the
http://www.literarysociety.org/authors namespace. Outside of the
<author> element, this default namespace is no longer defined.

Comparing two namespaces

Sometimes you will want to check the value of a namespace. For example, in XSLT
stylesheets all of the stylesheet elements have to be from the namespace
http://www.w3.org/1999/XSL/Transform. Typically, this namespace string is
associated with the prefix xsl, but that's not required. When you make sure the
namespace for a given element is correct, you need to check the namespace string,
not the namespace prefix. In other words, this XSLT element is correct:

<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

while this XSLT element is not:

<xsl:stylesheet xmlns:xsl="http://i-love-stylesheets.com">

In the second example, the namespace prefix is what you'd expect, but the

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 2
Page 10 of 39 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

namespace string is wrong. As a final example, this XSLT element is correct:

<xqdkera:stylesheet
xmlns:xqdkera="http://www.w3.org/1999/XSL/Transform">

The prefix here isn't the traditional xsl, but that's not important. When comparing
two namespaces, the prefix doesn't matter.

A common misconception about namespaces

The most confusing thing about namespaces is the unique string is not used as a
URL (yes, it looks like one, but it isn't). It is common practice for groups to use their
domain names to make sure the string is unique. You might think (as I first did) that
an Internet-connected XML parser would download a DTD or schema from that
URL, but it doesn't.

Although the Namespaces in XML standard defines the unique string as a URI
(Universal Resource Identifier -- see Resources), it's effectively just a string.
xmlns:addr="cranberries" is legal, as long as cranberries is unique among
all the namespace definitions in this document. For all the details on valid URIs, see
the URI standard (RFC2396) in Resources on page 38.

One final (potentially confusing) point

If you have no trouble understanding that the unique string isn't a URL and that an
XML parser will never use that string as a URL, read on. If you have any doubts, or if
you're still confused, see Getting namespace information from a parser.

Even though the namespace string isn't a URL, sometimes if you point your browser
at the string you'll find useful information about a tag set or document type. That's
completely optional, and intended for human consumption, not for machines. As an
example, the namespace
http://www.w3.org/2003/05/soap-envelope/role/next is defined in the
SOAP 1.2 specification. If you point your browser at
http://www.w3.org/2003/05/soap-envelope/role/next, you'll see an HTML page that
points you to more information about the SOAP 1.2 spec.

If other people are likely to use the elements you define, it's a good idea to provide
this information just in case someone tries to load a namespace URI.

Section 4. Parsing with namespaces

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 2
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 11 of 39

resources.html
section4.html#namespace-parser
http://www.w3.org/2003/05/soap-envelope/role/next
http://www.ibm.com/legal/copytrade.shtml

Getting namespace information from a parser

Now that you've seen the basics of namespaces, I'll take a look at DOM, SAX, and
JDOM, to see how they report namespace information. All of these examples use
the following modified version of the sonnet:

<sonnet pt:type="Shakespearean"
xmlns:pt="http://www.literarysociety.org/poemtypes" >

<auth:author
xmlns:auth="http://www.literarysociety.org/authors">

<auth:lastName>Shakespeare</auth:lastName>
<auth:firstName>William</auth:firstName>
<auth:nationality>British</auth:nationality>
<auth:yearOfBirth>1564</auth:yearOfBirth>
<auth:yearOfDeath>1616</auth:yearOfDeath>

</auth:author>
<title>Sonnet 130</title>
<lines>
. . .
</lines>

</sonnet>

When working with namespaces, you'll need to know several pieces of information
for any namespace-qualified element. As an example, consider the
<auth:lastName> element above:

The local (unqualified) name of the element
lastName -- The name of the element without any namespace prefix

The namespace prefix
auth

The qualified name of the element
auth:lastName -- The name of the element, including any namespace prefix

The namespace URI
http://www.literarysociety.org/authors

I'll show you how each API exposes this information.

DOM and namespaces

Namespace support was added to the Document Object Model in DOM Level 2.
Here's a list of your information items, along with the DOM methods that give you
that information:

The local (unqualified) name of the element
Node.getLocalName()

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 2
Page 12 of 39 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The namespace prefix
Node.getPrefix()

The qualified name of the element
Node.getNodeName()

The namespace URI
Node.getNamespaceURI()

Notice that all of these methods are part of the Node interface. Be aware that using
these methods has a few complications:

• If you invoke getLocalName(), getPrefix(), or
getNamespaceURI() against anything other than an Element or
Attribute, the result is null.

• If you invoke getLocalName(), getPrefix(), or
getNamespaceURI() against an element created with a DOM Level 1
method such as Document.createElement(), the result is null. (To
create a node that can be used with these methods, use the DOM Level 2
method Document.createElementNS() instead.)

• For Element s and Attribute s, getNodeName() always returns the
name of the element or attribute. If the element or attribute is
namespace-qualified, the node name will be auth:lastName or
something similar; if it is not, the node name will be lastName. To
determine if a given node name is namespace-qualified, you have to see
if getPrefix() is non-null or search for a colon in the node name.

Creating a namespace-aware DOM parser

Now take a look at DomNS, a Java program from the introductory XML programming
in Java tutorial (http://www.ibm.com/developerworks/edu/x-dw-xml-i.html) that's
similar in structure to DomOne. You'll see two basic differences here: You need to
create a namespace-aware DOM parser, and add more code to process any
namespace information in the DOM tree. Instead of merely echoing the parsed
document back to the console, you print information about any namespace-qualified
elements in the DOM tree.

Your first step is to create a namespace-aware parser. For most parsers,
namespace-awareness is turned off by default. Because you're using JAXP, you
need to set the property of your DocumentBuilderFactory before you create
your DOM parser:

DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();
dbf.setNamespaceAware(true);
DocumentBuilder db = dbf.newDocumentBuilder();
doc = db.parse(uri);

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 2
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 13 of 39

http://www.ibm.com/developerworks/edu/x-dw-xml-i.html?S_TACT=105AGX06&S_CMP=TUT
http://www.ibm.com/developerworks/edu/x-dw-xml-i.html?S_TACT=105AGX06&S_CMP=TUT
http://www.ibm.com/legal/copytrade.shtml

if (doc != null)
printNamespaceInfo(doc.getDocumentElement());

Use the JAXP setNamespaceAware() method to turn on namespace-awareness
for your factory class; from that point, any DOM parser that the factory creates will
be namespace-aware. Once you have the parser set up, call the recursive
printNamespaceInfo() method to find all the namespace-qualified elements and
attributes in your document.

Finding namespaces in a DOM tree

The printNamespaceInfo() method looks at any elements and attributes in the
DOM tree, and prints details of those nodes whenever the getPrefix() method
returns a non-null string. Here's the bulk of the code:

case Node.ELEMENT_NODE:
{

if (node.getPrefix() != null)
{

System.out.println("\nElement " + node.getNodeName());
System.out.println("\tLocal name = " +

node.getLocalName());
System.out.println("\tNamespace prefix = " +

node.getPrefix());
System.out.println("\tNamespace URI = " +

node.getNamespaceURI());
}

if (node.hasAttributes())
{

NamedNodeMap attrs = node.getAttributes();
for (int i = 0; i < attrs.getLength(); i++)

if ((attrs.item(i).getPrefix()) != null)
printNamespaceInfo (attrs.item(i));

}

if (node.hasChildNodes())
{

NodeList children = node.getChildNodes();
for (int i = 0; i < children.getLength(); i++)

printNamespaceInfo (children.item(i));
}

break;
}

case Node.ATTRIBUTE_NODE:
{
System.out.println("\nAttribute " +

node.getNodeName() + "="
+ node.getNodeValue());

System.out.println("\tLocal name = " +
node.getLocalName());

System.out.println("\tNamespace prefix = " +
node.getPrefix());

System.out.println("\tNamespace URI = " +
node.getNamespaceURI());

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 2
Page 14 of 39 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

break;
}

To process element nodes, follow these three steps:

1. If the element has a namespace prefix, print the details for the node.

2. Look at any attributes the element has; if any of them are
namespace-qualified, call printNamespaceInfo() for them.

3. Invoke printNamespaceInfo() for all of the element's children.

To process an attribute node, simply print its details. Notice that
printNamespaceInfo() is assumed to be invoked only for namespace-qualified
attribute nodes.

When you run DomNS against the file sonnetNamespaces.xml, you get these
results:

C:\adv-xml-prog>java DomNS sonnetnamespaces.xml

Attribute pt:type=Shakespearean
Local name = type
Namespace prefix = pt
Namespace URI = http://www.literarysociety.org/poemtypes

Attribute xmlns:pt=http://www.literarysociety.org/poemtypes
Local name = pt
Namespace prefix = xmlns
Namespace URI = http://www.w3.org/2000/xmlns/

Element auth:author
Local name = author
Namespace prefix = auth
Namespace URI = http://www.literarysociety.org/authors

Attribute xmlns:auth=http://www.literarysociety.org/authors
Local name = auth
Namespace prefix = xmlns
Namespace URI = http://www.w3.org/2000/xmlns/

Element auth:lastName
Local name = lastName
Namespace prefix = auth
Namespace URI = http://www.literarysociety.org/authors

. . .

The output shows details of any namespace-qualified element or attribute in the
source document. The partial output here lists the pt:type attribute, the
<auth:author> element, and the <auth:lastName> element.

for xmlns:pt and xmlns:auth map to a namespace of

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 2
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 15 of 39

http://www.ibm.com/legal/copytrade.shtml

http://www.w3.org/2000/xmlns/. This is the default namespace used by
DOM parsers for namespace definitions themselves. Section 4 of the original XML
namespaces specification stated, "The prefix xmlns is used only for namespace
bindings and is not itself bound to any namespace name." However, when DOM
Level 2 was released, Section 1.1.8 of the DOM Level 2 spec amended this:

Note: In the DOM, all namespace declaration attributes are by definition bound to
the namespace URI: http://www.w3.org/2000/xmlns/. These are the
attributes whose namespace prefix or qualified name is "xmlns." Although, at the
time of writing, this is not part of the XML Namespaces specification, it is planned to
be incorporated in a future revision.

In other words, any attribute that defines a namespace (xmlns:abc="...") or a
default namespace (xmlns="...") will itself be mapped to the namespace
http://www.w3.org/2000/xmlns/. When you parse the same document with
SAX, namespace definitions are not reported as attributes, so no namespace is
defined for the definitions themselves.

To see the complete source code, check out DomNS.java.

Namespace-aware DOM methods

To wrap up this discussion of the DOM and namespaces, here's a list all of the
namespace-aware DOM methods. A brief description follows the name of each
method; check the DOM documentation that came with your parser for all the details
on the methods and how they work.

Document.createAttributeNS(...)
Creates an attribute with a given namespace and qualified name.

Document.createElementNS(...)
Creates an element with a given namespace and qualified name.

Document.getElementsByTagNameNS(...)
Returns a NodeList with all of the descendant nodes that match a given
namespace and local name.

Element.getAttributeNodeNS(...)
Returns an Attribute node, given a namespace and a local name for the
attribute.

Element.getAttributeNS(...)
Returns the value of an attribute, given a namespace and a local name for the
attribute.

Element.getElementsByTagNameNS(...)
Returns a NodeList with all of the descendant nodes that match a given
namespace and local name.

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 2
Page 16 of 39 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.w3.org/TR/REC-xml-names/#ns-using
http://www.w3.org/TR/REC-xml-names/#ns-using
http://www.w3.org/TR/DOM-Level-2-Core/core.html#Namespaces-Considerations
DomNS.java
http://www.ibm.com/legal/copytrade.shtml

Element.hasAttributeNS(...)
Returns true if this element has an attribute with a given namespace and local
name, false otherwise.

Element.removeAttributeNS(...)
Given a namespace and a local name, removes the attribute with that
namespace and local name from this element.

Element.setAttributeNodeNS(...)
Adds a given namespace-qualified Attr object to this element.

Element.setAttributeNS(...)
Given a namespace, the local name of an attribute, and a value, adds to this
element a namespace-qualified attribute with the specified value.

Node.getLocalName()
Returns the local (unqualified) name of a given node.

Node.getNamespaceURI()
Returns the namespace string associated with a given node, or null if the
element or attribute isn't associated with a namespace.

Node.getNodeName()
Returns the name of this node. If the node is namespace-qualified, this method
returns the prefix and the element name; otherwise, it returns the element
name only.

Node.getPrefix()
Returns the namespace prefix for this node, or null if the element or attribute
didn't have a prefix in the XML source.

Node.setPrefix(...)
Sets the namespace prefix for this node.

Note: All of the methods defined in the Node interface return useful information for
Element s and Attribute s only. Invoking these methods against other node
types returns null.

SAX and namespaces

As with DOM, the first release of SAX was not namespace-aware. SAX 2 added
namespace awareness through a variety of methods; I'll review those here. First,
take a look at how you get your four information items:

The local (unqualified) name of the element
The localName parameter (the second parameter) to the startElement and
endElement events.

The namespace prefix

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 2
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 17 of 39

http://www.ibm.com/legal/copytrade.shtml

Not directly accessible. The namespace prefix is everything before the colon in
the qName parameter (the third parameter) to the startElement and
endElement events.

The qualified name of the element
The qName parameter (the third parameter) to the startElement and
endElement events.

The namespace URI
The uri parameter (the first parameter) to the startElement and
endElement events.

As you'd expect, namespace information is provided through various events,
particularly startElement and endElement.

Creating a namespace-aware SAX parser

Now take a look at SAXNS, a Java program similar to the earlier DomNS. As with
DomNS, your first step is to create a namespace-aware parser. Set a property of the
SAXParserFactory object, create a SAXParser, and then you're ready to start
parsing. Here's how to create the SAXParser you need:

SAXParserFactory spf = SAXParserFactory.newInstance();
spf.setNamespaceAware(true);
SAXParser sp = spf.newSAXParser();
sp.parse(uri, this);

Use the JAXP setNamespaceAware() method to turn on namespace-awareness
for your factory class; from that point, any SAXParser that the factory creates will
be namespace-aware. Once you have the parser set up, your event handlers take it
from there.

Finding namespaces in SAX events

For SaxNS, you want to echo the details of any namespace-qualified elements or
attributes to the console. You can find all the information you need in the
startElement event. Here's the code for the startElement event handler:

public void startElement(String namespaceURI, String localName,
String qName, Attributes attrs)

{
if (namespaceURI.length() > 0)
{
System.out.println("\nElement " + qName);
System.out.println("\tLocal name = " + localName);
if (qName.indexOf(':') > 0)

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 2
Page 18 of 39 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

System.out.println("\tNamespace prefix = " +
qName.substring(0, qName.indexOf(':')));

else
System.out.println("\tNamespace prefix =");

System.out.println("\tNamespace URI = " + namespaceURI);
}

if (attrs != null)
{
int len = attrs.getLength();
for (int i = 0; i < len; i++)

if (attrs.getURI(i).length() > 0)
{
System.out.println("\nAttribute " +

attrs.getQName(i) + "=" +
attrs.getValue(i));

System.out.println("\tLocal name = " +
attrs.getLocalName(i));

if (qName.indexOf(':') > 0)
System.out.println("\tNamespace prefix = " +

attrs.getQName(i).
substring(0,

attrs.getQName(i).
indexOf(':')));

else
System.out.println("\tNamespace prefix = ");

System.out.println("\tNamespace URI = " +
attrs.getURI(i));

}
}

}

As you'd expect, this code is very similar to the code for DomNS. However, there are
a few differences:

• When you're dealing with the properties of an element, those properties
are arguments to the event handler. In the DOM version, those properties
are accessed through methods.

• As I mentioned earlier, you can't get the namespace prefix of an element
or attribute directly. The example code uses the
java.lang.String.indexOf() and
java.lang.String.substring() methods to extract the prefix from
the qualified name of the element or attribute. (Notice that you have to
make sure the qualified name contains a colon; if this element or attribute
uses a default namespace, the qualified name won't include a colon.)

• Attributes in SAX work much more like attributes in the DOM world. The
attributes of an element are represented as a set of objects, and methods
such as getLocalName() and getValue() let you work with the
properties of a given attribute.

When you run SaxNS against the file sonnetNamespaces.xml, you get these
results:

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 2
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 19 of 39

http://www.ibm.com/legal/copytrade.shtml

C:\adv-xml-prog>java SaxNS sonnetnamespaces.xml

Attribute pt:type=Shakespearean
Local name = type
Namespace prefix = pt
Namespace URI = http://www.literarysociety.org/poemtypes

Element auth:author
Local name = author
Namespace prefix = auth
Namespace URI = http://www.literarysociety.org/authors

Element auth:lastName
Local name = lastName
Namespace prefix = auth
Namespace URI = http://www.literarysociety.org/authors

Element auth:firstName
Local name = firstName
Namespace prefix = auth
Namespace URI = http://www.literarysociety.org/authors

Element auth:nationality
Local name = nationality
Namespace prefix = auth
Namespace URI = http://www.literarysociety.org/authors

For the most part, the output of SaxNS is the same as the output from DomNS. The
only difference is that the SAXParser doesn't report the namespace definitions
themselves (such as xmlns:pt="http://www.lit...") as attributes. In a
minute, I'll show you the SAX events that handle namespace definitions.

For the complete source code, see SaxNS.java.

Namespace-specific SAX events

In the discussion on finding namespaces with a DOM parser (Finding namespaces
in a DOM tree on page), I pointed out that all namespace definitions are reported
as attributes belonging to the http://www.w3.org/2000/xmlns/ namespace.
You might have noticed that in the output to SaxNS namespace definitions didn't
show up in the output at all. In other words, the attributes for the <sonnet> element
included the pt:type attribute, but didn't include the definition of the pt namespace
itself.

them through separate events. The startPrefixMapping and
endPrefixMapping events tell you when a particular namespace is defined, as
well as when that namespace goes out of scope and is no longer defined. Next, I'll
look at a new application, SaxNSTwo, which uses these new events to handle
namespaces.

One of the reasons for handling startPrefixMapping and endPrefixMapping
is to keep track of the various prefixes and the namespace URIs that they are
mapped to. In SaxNSTwo, I show you how to create a private HashMap to keep track
of namespace events as they come in. Here's the code that implements the

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 2
Page 20 of 39 © Copyright IBM Corporation 1994, 2005. All rights reserved.

SaxNS.java
http://www.ibm.com/legal/copytrade.shtml

HashMap and the event handlers:

private HashMap prefixes = new HashMap();
. . .
public void startPrefixMapping(String prefix, String uri)
{
System.out.println("\nNew namespace:");
System.out.println("\tNamespace prefix = " + prefix);
System.out.println("\tNamespace URI = " + uri);

prefixes.put(uri, prefix);
}

public void endPrefixMapping(String prefix)
{
System.out.println("\nPrefix " + prefix +

" is no longer in scope.");
}

The logic here is pretty simple; when you get a startPrefixMapping event, you
add that prefix and URI combination to the HashMap. When you get an
endPrefixMapping event, you remove the prefix and URI. The last enhancement
to make to SaxNSTwo is to add a private method to get the prefix mapping for a
particular URI:

private String getPrefix(String url)
{
if (prefixes.containsKey(url))
return prefixes.get(url).toString();

else
return "";

}

When you're echoing namespace information to the console, you can now use your
getPrefix() method to retrieve the prefix that's associated with a given URI:

if (namespaceURI.length() > 0)
{
System.out.println("\nElement " + qName);
System.out.println("\tLocal name = " + localName);
System.out.println("\tNamespace prefix = " +

getPrefix(namespaceURI));
System.out.println("\tNamespace URI = " + namespaceURI);

}

The complete source code is in SaxNSTwo.java.

A final approach to handling namespaces

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 2
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 21 of 39

SaxNSTwo.java
http://www.ibm.com/legal/copytrade.shtml

The approach used in SaxNSTwo was fairly straightforward: When you get a
startPrefixMapping event, you put an entry into your HashMap, then retrieve
that value whenever you need it. If a given URI is mapped to two prefixes, and those
definitions are nested within each other, SaxNSTwo won't get the job done. This
case isn't common, but it is legal. SaxNS Two doesn't correctly handle the case of a
given prefix being mapped to two URIs, but the parser's error checking kicks in
before your code does anything wrong.

To handle this problem (assuming you consider it a problem at all), you would need
to implement a stack for each URI, pushing a value onto that URI's stack with a
startPrefixMapping event, and popping a value from that URI's stack with an
endPrefixMapping event.

If this case matters to you, the org.xml.sax.helpers package provides a special
class, NamespaceSupport, to manage namespaces as they go into and out of
scope. I'll look at a final class, SaxNSThree, that uses a NamespaceSupport
object to deal with namespaces.

Here's how to handle namespaces using a NamespaceSupport object:

• When you get a startPrefixMapping event, call pushContext() to
store the current set of defined namespaces. After that, call
declarePrefix to add the newly-defined namespace to the current
context.

• When you get an endPrefixMapping event, call popContext to return
to the previous set of namespace definitions.

• Whenever you need to get the prefix associated with a given URI, call
getPrefix().

Now take a look at SaxNSThree. First of all, here's the declaration of the
NamespaceSupport object and the two event handlers:

private NamespaceSupport ns = new NamespaceSupport();
. . .
public void startPrefixMapping(String prefix, String uri)
{

ns.pushContext();
ns.declarePrefix(prefix, uri);

}

public void endPrefixMapping(String prefix)
{

ns.popContext();
}

To illustrate namespace handling, you'll process all of the elements and attributes as
before, plus you'll list all of the namespaces defined when you process each
element. The output for your sample sonnet looks like this:

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 2
Page 22 of 39 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

C:\adv-xml-prog>java SaxNSThree sonnetnamespaces.xml

<sonnet> : 2 prefixes defined - (xml, pt)

Attribute pt:type=Shakespearean
Local name = type
Namespace prefix = pt
Namespace URI = http://www.literarysociety.org/poemtypes

<auth:author> : 3 prefixes defined - (xml, auth, pt)
Local name = author
Namespace prefix = auth
Namespace URI = http://www.literarysociety.org/authors

<auth:lastName> : 3 prefixes defined - (xml, auth, pt)
Local name = lastName
Namespace prefix = auth
Namespace URI = http://www.literarysociety.org/authors

. . .
<title> : 2 prefixes defined - (xml, pt)

<lines> : 2 prefixes defined - (xml, pt)
. . .

Notice that the XML prefix is always defined; it is mapped to the string
http://www.w3.org/XML/1998/namespace. The NamespaceSupport object
keeps track of which namespace definitions are currently in scope.

One downside to the implementation of NamespaceSupport is that it returns
Enumeration s for the getPrefixes() method. (NamespaceSupport uses
Enumeration s in other places, too.) To get the number of namespaces in scope,
you have to write some clumsy code:

private int getPrefixCount()
{
Enumeration e = ns.getPrefixes();
int count = 0;
while (e.hasMoreElements())
{
count++;
e.nextElement();

}

return count;
}

If the getPrefixes() method returns a Java collection object of some kind, you
can use the size() method to get the number of prefixes currently defined.

For the complete source code, see SaxNSThree.java.

Namespace-aware SAX objects

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 2
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 23 of 39

SaxNSThree.java
http://www.ibm.com/legal/copytrade.shtml

Before I move on to namespace processing with JDOM, here's a list of all the
namespace-aware SAX classes and interfaces, along with a brief discussion of
each. As always, check the SAX documentation that comes with your XML parser
for the final word on the methods and their meanings.

org.xml.sax.Attributes
With the exception of getLength(), which returns the number of attributes, all
of the methods of this class are namespace-aware.

org.xml.sax.ContentHandler
The startElement, endElement, startPrefixMapping, and
endPrefixMapping events are all namespace-aware.

org.xml.sax.helpers.AttributesImpl
The following methods are namespace-aware: addAttribute(),
getIndex(), getLocalName(), getQName(), getType(), getURI(),
getValue(), setAttribute(), setLocalName(), setQName(), and
setURI().

org.xml.sax.helpers.DefaultHandler
The startElement, endElement, startPrefixMapping, and
endPrefixMapping events are all namespace-aware. (These events are
defined in the ContentHandler interface, which is implemented by
DefaultHandler.)

org.xml.sax.helpers.NamespaceSupport
This class exists to manage namespaces as they go into and out of scope.

org.xml.sax.helpers.XMLFilterImpl
This class implements the ContentHandler interface, so it includes the
namespace-aware events startElement, endElement,
startPrefixMapping, and endPrefixMapping.

JDOM and namespaces

To begin this discussion, take a look at the JDOM APIs for getting the four basic
pieces of information for an element or attribute:

Element.getName()
The local (unqualified) name of the element

Element.getNamespacePrefix()
The namespace prefix

Element.getQualifiedName()
The qualified name of the element

Element.getNamespaceURI()
The namespace URI

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 2
Page 24 of 39 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The names of these methods are straightforward. To illustrate how JDOM works with
namespaces, I'll show you JdomNS, an application that parses an XML file and
echoes namespace information back to the console.

When I showed you how to process namespaces with DOM and SAX, I mentioned
that you have to specify that you want a namespace-aware parser. With JDOM,
namespaces are turned on by default in the underlying SAX parser, encapsulated by
the org.jdom.input.SAXBuilder object. If you need to control the properties of
the SAXBuilder, you can use the setFeature() or setProperty() methods.
Be aware that the JDOM needs the SAX parser to be configured a certain way, so
the JDOM documentation recommends that you use these methods with caution.

Processing namespace information with JDOM

To build JdomNS, parse the XML file and get your JDOM Document structure back.
As with DomNS, you'll have to walk through that structure and find all of the
namespace information. You'll use a recursive approach here. Here's how the code
begins:

SAXBuilder sb = new SAXBuilder();
Document doc = sb.build(new File(argv[0]));
if (doc != null)

printNamespaceInfo(doc.getRootElement());

Notice that the argument to printNamespaceInfo() is a JDOM Element. In
DOM, you had a single datatype (the Node) that was subclassed by every node
type. With JDOM, you'll work with Element s only.

Speaking of printNamespaceInfo(), I'll show you this method next. It has four
tasks:

1. If this element is namespace-qualified, echo the namespace information
to the console.

2. If this element has any namespace declarations, echo those to the
console.

3. If this element has any namespace-qualified attributes, echo the
namespace information about those attributes to the console.

4. If this element has any children, invoke printNamespaceInfo()
against each child.

I'll take these tasks in order as I go through the source code. First of all, to see if the
current element is namespace-qualified, check the namespace URI of the current
element:

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 2
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 25 of 39

http://www.ibm.com/legal/copytrade.shtml

if (el.getNamespaceURI().length() > 0)
{
System.out.println("\nElement " + el.getQualifiedName());
System.out.println("\tLocal name = " + el.getName());
System.out.println("\tNamespace prefix = " +

el.getNamespacePrefix());
System.out.println("\tNamespace URI = " +

el.getNamespaceURI());
}

Next, look for any additional namespaces defined on this element. Notice that JDOM
handles namespace declarations differently than DOM. In the DOM application, a
namespace declaration (xmlns:tp="http://...", for example) was reported
as another attribute. With JDOM, the namespace declaration is not considered an
attribute, so you have to use the getAdditionalNamespaces() method.

A final note: If the current element contains its own namespace definition (such as
the <auth:author xmlns:auth="..."> element in the sample document), that
namespace definition is available only through the current element, not through
getAdditionalNamespaces(). Here's the next segment of the code:

Iterator nsIter = el. getAdditionalNamespaces().
listIterator();
while (nsIter.hasNext())
{
Namespace ns = (Namespace) nsIter.next();
System.out.println("\nNamespace declaration:");
System.out.println("\tNamespace prefix = " + ns.getPrefix());
System.out.println("\tNamespace URI = " + ns.getURI());

}

With all of the JDOM methods that return sets of things (getAttributes(),
getAdditionalNamespaces(), getChildren(), and so forth), that set of things
is returned to you as a List, part of the Java Collections API. You should use a
ListIterator to walk through the List. A final note about using collections:
Because the ListIterator returns Object s, you have to cast the various items
to Namespace s, Attribute s, and so forth.

Your next task is to look at all of the current element's attributes and see if any of
them are namespace-qualified. That code uses a ListIterator, as you'd expect:

Iterator attrIter = el.getAttributes().listIterator();
while (attrIter.hasNext())
{
Attribute attr = (Attribute)attrIter.next();
if (attr.getNamespaceURI().length() > 0)
{
System.out.println("\nAttribute " +

attr.getQualifiedName() + "=" +

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 2
Page 26 of 39 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

attr.getValue());
. . .

The final task is to get the children of this Element and call printNamespaceInfo
to handle each one. Here's how that code looks:

Iterator childIter = el.getChildren().listIterator();
while (childIter.hasNext())
printNamespaceInfo((Element)childIter.next());

For the complete source code, see JdomNS.java.

Section 5. Validating XML documents

Validation overview

When XML was first introduced, it's validation scheme was the Document Type
Definition, or DTD. DTDs came from the SGML world, and are typically concerned
with the structure of a document only. They have a limited notion of data typing, but
nothing like what you would expect from a modern programming language.

For example, I can use a DTD to define that a <postcode> element is required for
an <address> element, and a validating parser will enforce that. Any XML
document that contains an <address> without a <postcode> will be flagged as
not valid. Unfortunately, a parser using a DTD for validation is equally happy with
<postcode>B9C 4F8</postcode> as it is with <postcode>Mad dogs and
Englishmen</postcode>. Clearly the XML world needed a more robust validation
language.

To fill the void, the World Wide Web Consortium (W3C) created the XML Schema
language, an attempt to address the needs of the XML community. XML Schema (I'll
call it that from now on) is divided into two parts: data types and document
structures. The data types spec defines some basic data types as well as rules for
creating new ones, while the document structure spec defines a set of XML tags for
specifying what elements a document can contain.

Defining a markup language to describe the contents of an XML document is a
daunting task, and as you'd expect, not everyone was/is happy with XML Schema. In
this tutorial, I'll show you two other schema languages, RELAX NG and Schematron.
Support for these languages isn't as widespread as XML Schema, but each of them
has a loyal and active following.

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 2
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 27 of 39

JdomNS.java
http://www.ibm.com/legal/copytrade.shtml

One final point about DTDs: They use a different (and completely incompatible)
syntax than XML documents. This is another holdover from the SGML world.
Although some people argue that the different syntaxes are a good thing, most users
prefer a validation language specifiable as XML. XML Schema, RELAX NG, and
Schematron are all XML-based. Among other things, that means you can write an
XSLT stylesheet that converts a schema into a human-readable document that
explains the rules of the schema.

Defining a document with a DTD

Before I explore validation with various kinds of parsers, take a look at the document
definitions you'll use. First of all, the DTD:

<!ELEMENT sonnet (author,title?,lines)>

<!ATTLIST sonnet type (Shakespearean | Petrarchan)
"Shakespearean">

<!ELEMENT author (lastName,firstName,nationality,
yearOfBirth?,yearOfDeath?)>

. . .
<!ELEMENT lines (line,line,line,line,

line,line,line,line,
line,line,line,line,
line,line)>

<!ELEMENT line (#PCDATA)>

The DTD defines all of your elements and attributes. The syntax above defines the
type attribute of the <sonnet> element. It also defines the valid values (
Shakespearean and Petrarchan), as well as the default value (
Shakespearean). Other syntax notes:

• The question marks next to some of the elements means those elements
are optional.

• #PCDATA means an element contains only text, not other elements.

• To specify that a <lines> element contains 14 <line> elements, you
have to list all 14 elements. If a <lines> element could contain 10, 12, or
14 <line> elements, then you would have to list all of the possibilities
with 10 <line> elements, followed by a vertical bar (|), followed by 12
<line> elements, followed by a vertical bar, followed by 14 <line>
elements.

Defining a document with an XML Schema

Next, look at an XML Schema that defines the sonnet document type. The significant
parts of the schema are:

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 2
Page 28 of 39 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="sonnet">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="author"/>
<xsd:element ref="title" minOccurs="0"/>
<xsd:element ref="lines"/>

</xsd:sequence>
</xsd:complexType>
<xsd:attribute name="type" type="sonnetType"

default="Shakespearean"/>
</xsd:element>

<xsd:simpleType name="sonnetType">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="Petrarchan"/>
<xsd:enumeration value="Shakespearean"/>

</xsd:restriction>
</xsd:simpleType>

. . .
<xsd:element name="title" type="xsd:string"/>

<xsd:element name="lines">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="line" minOccurs="14" maxOccurs="14"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="line" type="xsd:string"/>

Several items are defined here. First is the <sonnet> element: Its contents are an
<author> element, a <title> element, and a <lines> element. Some syntax
notes:

• Use minOccurs="0" to indicate that the <title> element is optional.

• Define a separate datatype for your attribute; that datatype is based on
the xsd:string datatype, and can contain one of two values,
Shakespearean or Petrarchan.

• On the definition of the attribute itself, the default value of the attribute is
also defined.

• To define that a sonnet contains 14 <line> s, use minOccurs="14"
and maxOccurs="14".

Defining a document with RELAX NG

When it comes to defining the structure of a document, XML Schema isn't the only
game in town. Another popular method is RELAX NG, a project led by XML guru
James Clark. RELAX NG is currently being developed by an OASIS technical

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 2
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 29 of 39

http://www.ibm.com/legal/copytrade.shtml

committee (see Resources). To quote the committee's Web site:

The purpose of this TC is to create a specification for a schema language that is
simple, easy to learn, and uses XML syntax.

True to the committee's design goals, the RELAX NG syntax is very simple. To
define an element, you use the <element> element. To define that an element or
attribute is optional, you use the <optional> element. Here's a fragment of the
RELAX NG definition for the example sonnet:

<grammar>
. . .
<start>
<element name="sonnet">

<ref name="typeAttribute"/>
<ref name="author"/>
<ref name="title"/>
<ref name="lines"/>

</element>
</start>

</grammar>

From this simple listing, it looks like a <sonnet> element contains four things,
defined elsewhere in the RELAX NG file as typeAttribute, author, title, and
lines. typeAttribute is an attribute named type that contains one of two
values, Shakespearean or Petrarchan. Here's the definition:

<define name="typeAttribute">
<attribute name="type">
<choice>

<value>Shakespearean</value>
<value>Petrarchan</value>

</choice>
</attribute>

</define>

The RELAX NG <define> element works like a replacement function; anywhere
you refer to the definition (as in <ref name="typeAttribute">), the reference
is replaced with the contents of the <define> element.

Note: The RELAX NG committee has defined a way to specify default attribute
values; see Resources for more information.

One aspect of RELAX NG that isn't as nice as XML Schema is that it doesn't have a
mechanism for defining cardinality, the number of elements that can occur in a
particular part of your XML document. In XML Schema, you used minOccurs="14"
and maxOccurs="14" to define that a <lines> element contains 14 <line>
elements. In RELAX NG, you have to list them out:

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 2
Page 30 of 39 © Copyright IBM Corporation 1994, 2005. All rights reserved.

resources.html
resources.html
http://www.ibm.com/legal/copytrade.shtml

<define name="lines">
<element name="lines">
<ref name="line"/>
<ref name="line"/>
<ref name="line"/>
. . .
<ref name="line"/>

</element>
</define>

For the complete source of sonnet.rng, visit sonnet.rng.

Defining a document with Schematron

Schematron documents use XPath expressions to define the contents of a valid
XML document. In the example here, the Schematron <assert> element is used to
define the rules for the sonnet. Each <assert> statement has a test attribute; if
the test is not true, then the text of the <assert> element is written out as an error
message.

This example shows the Schematron rule for the <lines> element:

<rule context="lines">
<assert test="count(line) = 14">
A sonnet must have 14 <line>s.

</assert>
<assert test="count(line) = count(*)">
The <lines> element can only contain
<line> elements.

</assert>
</rule>

The first constraint here is that a <lines> element must contain 14 <line>
elements. The second constraint is slightly more complex; it says that a <lines>
element cannot contain any other elements. The way to define this is to say that the
total number of <line> elements must equal the total number of all elements.

However, Schematron isn't as convenient when defining sequences of elements.
This is a reflection of XPath syntax; XPath expressions typically define the location
of an element or a group of elements. Using XPath to define a sequence isn't pretty.
For example, a <sonnet> element must contain an <author> element, followed by
an optional <title> element, followed by a <lines> element. Here's how you
express that in Schematron:

<assert test="count(*) < 4">
The <sonnet> element contains an <author>

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 2
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 31 of 39

sonnet.rng
http://www.ibm.com/legal/copytrade.shtml

element, an optional <title> element, and a
<lines< element.

</assert>
<assert test="*[1] = author">
The first child of the <sonnet> element must be
an <author> element.

</assert>
<assert test="(count(*) = 2 and *[2] = lines) or

(count(*) = 3 and
*[2] = title and *[3] = lines)">

If you use the optional <title> element, the
<sonnet> element must contain the <author>,
<title>, and <lines> elements in that order.

</assert>

The first rule is that a <sonnet> element can't contain more than three elements.
The second rule states that the first child of a <sonnet> element must be an
<author> element. Finally, the third rule says that after the <author> element
(required by the second rule), a <sonnet> can contain either a <lines> element or
a <title> element followed by a <lines> element.

Here you're effectively listing all of the combinations of elements that can legally
occur in a <sonnet> element. In this case, that's not too bad, but clearly this could
quickly get out of hand for a more complex document. Attempts to combine the
RELAX NG and Schematron approaches are underway; for more details, see Eddie
Robertsson's excellent XML.com article in Resources.

For the complete source code of sonnetSchematron.xml, see
sonnetSchematron.xml.

Document validation

Now that you've seen four different ways to define the contents of a valid XML
document, I'll show you how to use those definitions. Because not all tools support
all four validation methods, I'll use the following combinations of tools and
techniques:

• DTDs and XML Schemas: Both DOM and SAX parsers will be used to
validate documents with DTDs and schemas.

• RELAX NG: James Clark's open-source Jing tool validates XML
documents against a RELAX NG schema.

• Schematron: Schematron uses an XSLT stylesheet engine to generate a
new stylesheet, then it uses the XSLT engine again to validate the XML
document.

Validation with SAX

To validate an XML document using SAX, you need to define a couple of properties
on both the SAXParserFactory and the SAXParser it creates. This is different

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 2
Page 32 of 39 © Copyright IBM Corporation 1994, 2005. All rights reserved.

resources.html
sonnetSchematron.xml
http://www.ibm.com/legal/copytrade.shtml

from the earlier examples; to this point, you've always set properties of the factory
object, then created the parser object. Here's all the code you need:

SAXParserFactory spf = SAXParserFactory.newInstance();
spf.setNamespaceAware(true);
spf.setValidating(true);
SAXParser sp = spf.newSAXParser();
sp.setProperty
("http://java.sun.com/xml/jaxp/properties/schemaLanguage",
"http://www.w3.org/2001/XMLSchema");

sp.parse(uri, this);

The first two properties turn on namespaces and validation for all SAXParser s
created by the SAXParserFactory. The schemaLanguage property defines which
schema language you'll be using to validate the document. The value used here (
http://www.w3.org/2001/XMLSchema) is defined by JAXP. It's possible that a
given parser could define another value to indicate support for RELAX NG,
Schematron, or some other language, although none of the popular parsers have
done so as of June 2004.

In addition to the JAXP properties, some parsers defined their own property names
and values before JAXP standardized them. Although you can use them, it's not
recommended. Using the JAXP properties as you do here means your code won't be
tied to a particular parser.

Now that you've set the three properties on your factory and parser objects, you're
ready to validate the document. Edit sonnetSchema.xml and add a <nickname>
element inside the <author> element:

. . .
<author>
<lastName>Shakespeare</lastName>
<firstName>William</firstName>
<nickname>Shakin' Billy</nickname>

<nationality>British</nationality>
. . .

When you check this document with your validator, the results are:

C:\adv-xml-prog>java SaxValidator sonnetSchema.xml
[Error] sonnetschema.xml:9:15: cvc-complex-type.2.4.a: Invalid
content was found starting with element 'nickname'. One of '{"
":nationality}' is expected.

Your document is not valid.

For the complete source code, see SaxValidator.java.

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 2
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 33 of 39

SaxValidator.java
http://www.ibm.com/legal/copytrade.shtml

Validation with a DOM parser

The process of validating an XML document with a DOM parser is similar to that with
a SAX parser. I'll show you how to create a DocumentBuilderFactory, set some
of its properties, then create a parser (a DocumentBuilder). Before parsing and
validating the XML document, you need to define an error handler for the DOM
parser. Strangely, the error handler is a SAX error handler; this reflects the fact that
DOM parsers are typically built on top of SAX parsers.

Here's the section of the code that sets up the parser factory and creates the parser:

DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();

dbf.setNamespaceAware(true);
dbf.setValidating(true);

Now that you've set up your parser factory, you have one more thing to do before
creating your parser: define the schema language that the parser will use. If an XML
document is using a DTD, you don't set any special properties for the parser factory.
On the other hand, if the document uses an XML Schema, you need to define the
schemaLanguage property:

if (useSchema)
dbf.setAttribute
("http://java.sun.com/xml/jaxp/properties/schemaLanguage",
"http://www.w3.org/2001/XMLSchema");

Use a command-line argument to define whether you're going to use XML Schemas
or DTDs.

Now you're ready to create your parser object. Once the parser is created, you need
to set the error handler:

DocumentBuilder db = dbf.newDocumentBuilder();
db.setErrorHandler(this);
doc = db.parse(uri);

For simplicity's sake, you implement the error handler interface in the
DomValidator code. (Technically, you implement the SAX DefaultHandler
interface, which includes ErrorHandler.) For your purposes, that means you
implement the warning(), error(), and fatalError() methods.

To see the complete source code, visit DomValidator.java.

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 2
Page 34 of 39 © Copyright IBM Corporation 1994, 2005. All rights reserved.

DomValidator.java
http://www.ibm.com/legal/copytrade.shtml

Validation with Jing

Validation with Jing is relatively straightforward. Because Jing is a validation tool
itself, you can validate an XML document against a RELAX NG schema without
writing any code. The command-line syntax is:

c:>java -jar c:/jing-20030619/bin/jing.jar sonnet.rng sonnet.xml

The first parameter to the executable jar file is the RELAX NG schema, and the
second file is the XML document you want to validate. If your document is valid,
you'll get no messages; otherwise, you'll get a message that tells you where the
error occurred. For example, if you delete the <firstName> element, you'll get a
message like this:

c:>java -jar c:/jing-20030619/bin/jing.jar sonnet.rng sonnet.xml
sonnet.xml:6:18: error: required elements missing
c:>

Although this isn't the most detailed message in the world, it does give you the line
and column where the document went wrong.

If you'd like to embed Jing in your own code, the best approach is to use the code
from the com.thaiopensource.relaxng.util.Driver class (following the
Jing Copying Conditions distributed with Jing, of course).

Validation with Schematron

Schematron takes a unique approach to defining document contents: It uses XSLT
stylesheets. To validate an XML document with Schematron, use these three steps:

1. Create an XML document (sonnetSchematron.xml) that conforms to
the Schematron document rules.

2. Use Schematron's stylesheet to transform your document rules into a new
stylesheet (sonnetRules.xsl) that's customized to validate your
document type.

3. Transform your XML document with your custom stylesheet. If the
document is valid, the transformation generates no error messages;
otherwise, the stylesheet produces an error report.

The three steps are highlighted in this pictorial view of the process:

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 2
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 35 of 39

http://www.ibm.com/legal/copytrade.shtml

You've already completed the first step, so you're ready to transform your
Schematron document rules into a custom stylesheet. To do this, you need to have
the schematron-basic.xsl and skeleton1-5.xsl files, available at the
Schematron project's home page (see Resources). Assuming you're using the Xalan
XSLT engine, use this command to generate your custom stylesheet:

java org.apache.xalan.xslt.Process -in sonnetSchematron.xml
-xsl schematron-basic.xsl -out sonnetRules.xsl

This produces the file sonnetRules.xsl, a stylesheet that checks the validity of a
sonnet document. To use sonnetRules.xsl, run the stylesheet engine again:

java org.apache.xalan.xslt.Process -in sonnet.xml
-xsl sonnetRules.xsl

If the sonnet.xml document is valid, you won't see any error messages. If
something's wrong, you'll see the output of one of the <assert> elements that you
coded earlier. For example, if you take one of the 14 <line> elements out of the
sonnet, you'll see this error message:

In pattern count(line) = 14:
A sonnet must have 14 <line>s.

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 2
Page 36 of 39 © Copyright IBM Corporation 1994, 2005. All rights reserved.

resources.html
http://www.ibm.com/legal/copytrade.shtml

One nice aspect of Schematron is that you define your own error messages. If you
don't like the message above, you can change it. Schematron is an interesting
approach to validation. It's currently undergoing standardization by the ISO; see the
Schematron project's home page for more information and to download the
stylesheets used in this example.

Section 6. Summary

Summary

I've discussed a variety of techniques and APIs in this tutorial. All of them ultimately
focus on validation; you need to set parser features to use validation, and parsers
need to be aware of namespaces to validate XML documents. As in my earlier
tutorial, I've covered a number of different standards, APIs, and approaches, so you
can choose the tools that work best for you. In the final tutorial in this series, I'll look
at creating DOM and SAX structures from scratch, converting data structures from
one API to another, and some advanced features of the DOM and SAX APIs.

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 2
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 37 of 39

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Review the previous tutorial in this series, "XML programming in Java
technology, Part 1" (developerWorks, January 2004). Here, Doug Tidwell
covers the basics of manipulating XML documents using Java technology, and
looks at the common APIs for XML. If you want a refresher on the fundamentals
of XML itself, read Doug's popular "Introduction to XML" tutorial (
developerWorks, August 2002).

• Visit the DOM Technical Reports page at the W3C for links to all things
DOM-related. To view the individual specs, visit:

• Document Object Model Level 1

• DOM Level 2 Core

• DOM Level 3 Core

• Read about SAX Version 2.0.

• Learn all about JDOM at the JDOM project's home page.

• Read about Namespaces in XML.

• Reference the W3C XML Schema primer, the W3C XML Schema structures
spec, and the W3C XML Schema datatypes spec. All are good resources, but
for most common schema definitions you can find what you want in the primer
more quickly.

• Visit the home page of the RELAX NG effort to start learning about RELAX NG.
You can also visit the RELAX NG project page at OASIS. Doug also mentioned
that RELAX NG has a DTD Compatibility document that defines "datatypes and
annotations to support some of the features of XML 1.0 DTDs that are not
supported directly by RELAX NG."

• Learn more about Schematron at the Schematron project's home page.

• For all the details on valid Uniform Resource Identifiers, see the URI standard
(RFC2396).

• Read Eddie Robertsson's excellent article on XML.com for more information on
attempts to combine the RELAX NG and Schematron approaches.

• Find more resources related to the technologies discussed here on the
developerWorks XML and Java technology zones.

• Finally, find out how you can become an IBM Certified Developer in XML and
related technologies.

Get products and technologies

• For the complete examples, download x-java2_code_files.zip.

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 2
Page 38 of 39 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/developerworks/edu/x-dw-xml-i.html?S_TACT=105AGX06&S_CMP=TUT
http://www.ibm.com/developerworks/edu/x-dw-xml-i.html?S_TACT=105AGX06&S_CMP=TUT
http://www-106.ibm.com/developerworks/edu/x-dw-xmlintro-i.html?S_TACT=105AGX06&S_CMP=TUT
http://www.w3.org/DOM/DOMTR
http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/2003/CR-DOM-Level-3-Core-20031107
http://sax.sourceforge.net/
http://www.jdom.org/
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.relaxng.org
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=relax-ng
http://www.oasis-open.org/committees/relax-ng/compatibility.html
http://www.ascc.net/xml/schematron
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.xml.com/lpt/a/2004/02/11/relaxtron.html
http://www.ibm.com/developerworks/xml/
http://www.ibm.com/developerworks/java/
http://www-1.ibm.com/certify/certs/adcdxmlrt.shtml
http://www-1.ibm.com/certify/certs/adcdxmlrt.shtml
x-java2_code_files.zip
http://www.ibm.com/legal/copytrade.shtml

About the author

Doug Tidwell
One of the original 13 colonies, Doug "The Garden State" Tidwell is home to more
than 7 million people. Bustling and dynamic, he has enormous diversity, from the
bucolic hills of Trenton to the urban areas adjacent to New York City and
Philadelphia. Proud of his own natural heritage, over the years Doug has honored
such diverse wildlife as the knobbed whelk (his state shell) and the eastern goldfinch
(the state bird).

Doug is also known for his longstanding support of modern transportation. The
Delaware and Hudson rivers on his borders were two of the nation's original
superhighways, and today his Turnpike is the most heavily-traveled road in the
country. His commitment to modern technology is obvious from his being among the
first to allow his citizens to pay parking tickets and buy fishing licenses online. You
can reach him at dtidwell@us.ibm.com or visit his Web site, www.state.nj.us.

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 2
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 39 of 39

mailto:dtidwell@us.ibm.com
http://www.state.nj.us/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Introduction
	About this tutorial
	About the examples
	Setting up your machine

	Getting and setting parser features
	Parser features
	Setting SAX parser features
	SAX parser features
	A brief word about entities
	Setting DOM parser features

	An overview of namespaces
	Namespaces introduction
	More namespace details
	Comparing two namespaces
	A common misconception about namespaces
	One final (potentially confusing) point

	Parsing with namespaces
	Getting namespace information from a parser
	DOM and namespaces
	Creating a namespace-aware DOM parser
	Finding namespaces in a DOM tree
	Namespace-aware DOM methods
	SAX and namespaces
	Creating a namespace-aware SAX parser
	Finding namespaces in SAX events
	Namespace-specific SAX events
	A final approach to handling namespaces
	Namespace-aware SAX objects
	JDOM and namespaces
	Processing namespace information with JDOM

	Validating XML documents
	Validation overview
	Defining a document with a DTD
	Defining a document with an XML Schema
	Defining a document with RELAX NG
	Defining a document with Schematron
	Document validation
	Validation with SAX
	Validation with a DOM parser
	Validation with Jing
	Validation with Schematron

	Summary
	Summary

	Resources
	About the author

