
XML programming in Java technology, Part 1
Skill Level: Introductory

Doug Tidwell (dtidwell@us.ibm.com)
XML Evangelist

13 Jan 2004

This updated tutorial covers the basics of manipulating XML documents using Java
technology. Doug Tidwell looks at the common APIs for XML and discusses how to
parse, create, manipulate, and transform XML documents.

Section 1. Introduction

About this tutorial

Over the last few years, XML has become a universal data format. In this updated
tutorial, I'll show you the most common programming interfaces for working with
XML documents in the Java language.
The most common XML processing task is parsing an XML document. Parsing
involves reading an XML document to determine its structure and contents. One of
the pleasures of XML programming is the availability of open-source, no-cost XML
parsers that read XML documents for you. This tutorial focuses on creating parser
objects, asking those parsers to process XML files, and handling the results. As you
might expect, you can do these common tasks in several different ways; I'll examine
the standards involved as well as when you should use one approach or another.

Programming interfaces

A number of programming interfaces have been created to simplify writing Java
programs that process XML. These interfaces have been defined by companies, by
standards bodies, and by user groups to meet the needs of XML programmers. In
this tutorial, I'll cover the following interfaces:

• The Document Object Model (DOM), Level 2

• The Simple API for XML (SAX), Version 2.0

XML programming in Java technology, Part 1
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 1 of 28

mailto:dtidwell@us.ibm.com
http://www.ibm.com/legal/copytrade.shtml

• JDOM, a simple Java API created by Jason Hunter and Brett McLaughlin

• The Java API for XML Processing (JAXP)

The first three of these four interfaces (DOM, SAX, and JDOM) define how the
contents of an XML document are accessed and represented. JAXP contains
classes for creating parser objects. To create DOM or SAX parsers, you'll use JAXP.
When you use JDOM, the JDOM library uses JAXP under the covers to create a
parser. To sum it all up:

• You use DOM, SAX, or JDOM to work with the contents of an XML
document.

• If you use DOM or SAX, you use JAXP to create a parser.

• If you use JDOM, the JDOM library creates a parser for you.

I'll explore the design goals, strengths, and weaknesses of each of these APIs, along
with a bit of their histories and the standards bodies that created them.

About the examples

Throughout this tutorial, I'll show you a number of sample programs that use the
DOM, SAX, and JDOM APIs. All of them work with an XML-tagged Shakespearean
sonnet. The structure of the sonnet is:

<sonnet>
<author>
<lastName>
<firstName>
<nationality>
<yearOfBirth>
<yearOfDeath>

</author>
<lines>
[14 <line> elements]

</lines>
</sonnet>

For the complete example, see sonnet.xml and sonnet.dtd (download to view in a
text editor).

Setting up your machine

You'll need to set up a few things on your machine before you can run the examples.
(I'm assuming that you know how to compile and run a Java program, and that you
know how to set your CLASSPATH variable.)

1. First, visit the home page of the Xerces XML parser at the Apache XML
Project (http://xml.apache.org/xerces2-j/). You can also go directly to the
download page (http://xml.apache.org/xerces2-j/download.cgi).

2. Unzip the file that you downloaded from Apache. This creates a directory

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 1
Page 2 of 28 © Copyright IBM Corporation 1994, 2005. All rights reserved.

sonnet.xml
sonnet.dtd
http://xml.apache.org/xerces2-j/
http://xml.apache.org/xerces2-j/download.cgi
http://xml.apache.org/xerces2-j/download.cgi
http://www.ibm.com/legal/copytrade.shtml

named xerces-2_5_0 or something similar, depending on the release
level of the parser. The JAR files you need (xercesImpl.jar and
xml-apis.jar) should be in the Xerces root directory.

3. Visit the JDOM project's Web site and download the latest version of
JDOM (http://jdom.org/).

4. Unzip the file you unloaded from JDOM. This creates a directory named
jdom-b9 or something similar. The JAR file you need (jdom.jar)
should be in the build directory.

5. Finally, download the zip file of examples for this tutorial, xmlprogj.zip,
and unzip the file.

6. Add the current directory (.), xercesImpl.jar, xml-apis.jar, and
jdom.jar to your CLASSPATH.

Section 2. Parser basics

The basics

An XML parser is a piece of code that reads an XML document and analyzes its
structure. In this section, you'll see how XML parsers work. I'll show you the different
kinds of XML parsers and when you might want to use them.
Later sections of this tutorial will discuss how to create parsers and how to process
the results they give you.

How to use a parser

I'll talk about this in much more detail in future sections, but in general, here's how
you use a parser:

1. Create a parser object

2. Point the parser object at your XML document

3. Process the results

Obviously the third step is the complicated one. Once you know the contents of the
XML document, you might want to, for example, generate a Web page, create a
purchase order, or build a pie chart. Considering the infinite range of data that could
be contained in an XML document, the task of writing an application that correctly
processes any potential input is intimidating. Fortunately, the common XML parsing
tools discussed here can make the task much, much simpler.

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 1
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 3 of 28

http://jdom.org/
xmlprogj.zip
http://www.ibm.com/legal/copytrade.shtml

Kinds of parsers

Parsers are categorized in several different ways:

• Validating versus non-validating parsers

• Parsers that support one or more XML Schema languages

• Parsers that support the Document Object Model (DOM)

• Parsers that support the Simple API for XML (SAX)

Validating versus non-validating parsers

For those of you who are new to XML, there are three different kinds of XML
documents:

• Well-formed documents: These follow the basic rules of XML (attributes
must be quoted, tags must be nested correctly, and so forth).

• Valid documents: These are well-formed documents that also conform
to a set of rules specified in a Document Type Definition (DTD) or an XML
Schema.

• Invalid documents: Everything else.

For example, if you have an XML document that follows all of the basic rules of XML,
it's a well-formed document. If that document also follows all of the rules you've
defined for expense account documents in your company, it's valid as well.
If an XML parser finds that an XML document is not well-formed, the XML
Specification requires the parser to report a fatal error. Validation, however, is a
different issue. Validating parsers validate XML documents as they parse them,
while non-validating parsers don't. In other words, if an XML document is
well-formed, a non-validating parser doesn't care if that document follows the rules
defined in a DTD or schema, or even if there are any rules for that document at all.
(Most validating parsers have validation turned off by default.)

Why use a non-validating parser?

So why use a non-validating parser? Two good reasons: Speed and efficiency. It
takes a significant amount of effort for an XML parser to read a DTD or schema,
then set up a rules engine that makes sure every element and attribute in an XML
document follows the rules. If you're sure that an XML document is valid (maybe it's
generated from a database query, for example), you may be able to get away with
skipping validation. Depending on how complicated the document rules are, this can
save a significant amount of time and memory.
If you have brittle code that gets input data from XML documents, and that code
requires that the documents follow a particular DTD or schema, you're probably
going to have to validate everything, regardless of how expensive or time-consuming
it is.

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 1
Page 4 of 28 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Parsers that support XML Schema languages

The original XML specification defined the Document Type Definition (DTD) as a
way of defining how a valid XML document should look. Most of the DTD syntax
came from SGML, and was concerned with validation from a publishing perspective
rather than a data typing perspective. In addition, DTDs have a different syntax from
XML documents, making it difficult for users to understand the syntax of the
document rules.
To address these limitations, the Worldwide Web Consortium (W3C) created the
XML Schema language. An XML Schema allows you to define what a valid
document looks like with much greater precision. The XML Schema language is very
rich, and XML Schema documents can be quite complex. For this reason, XML
parsers that support validation with XML Schema tend to be quite large.
Also, be aware that the W3C's XML Schema language isn't the only game in town.
Some parsers support other XML schema languages, such as RELAX NG or
Schematron (I'll discuss schema languages in a future tutorial.)

The Document Object Model (DOM)

The Document Object Model, or DOM, is an official recommendation of the W3C. It
defines an interface that enables programs to access and update the structure of
XML documents. When an XML parser claims to support the DOM, that means it
implements the interfaces defined in the standard.
At the moment, two levels of the DOM are official recommendations, the
cleverly-named DOM Level 1 and DOM Level 2. DOM Level 3 is expected to
become official in early 2004. All of the DOM functions discussed in this tutorial are
part of DOM Level 1, so the code samples will work with any DOM parser.

What you get from a DOM parser

When you parse an XML document with a DOM parser, you get back a tree
structure that represents the contents of the XML document. All of the text,
elements, and attributes (along with other things I'll discuss shortly) are in the tree
structure. The DOM also provides a variety of functions that you can use to examine
and manipulate the contents and structure of the tree.
Be aware that a parser doesn't keep track of certain things. For example, the amount
of whitespace between an attribute and its value isn't stored in the DOM tree. From
the parser's perspective, these three attributes are exactly the same:

• type="common"

• type =
"common"

• type='common'

The DOM doesn't give you any way of knowing how the original document was
coded. As another example, an XML parser will not tell you if an empty element was
coded with one tag or two. (For example, was an XHTML horizontal rule coded as

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 1
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 5 of 28

http://www.ibm.com/legal/copytrade.shtml

<hr/> or <hr></hr>?) The information that an XML parser is required to keep
track of is called the XML Infoset (see Resources).

The Simple API for XML (SAX)

The Simple API for XML (SAX) API is an alternate way of working with the contents
of XML documents. It was designed to have a smaller memory footprint, but it puts
more of the work on the programmer. SAX and DOM are complementary; each is
appropriate on different occasions.
A de facto standard, SAX was originally developed by David Megginson with input
from many users across the Internet. See Resources for the complete SAX
standard. Your parser's documentation probably describes the SAX standard as
well.

What you get from a SAX parser

When you parse an XML document with a SAX parser, the parser generates a
series of events as it reads the document. It's up to you to decide what to do with
those events. Here's a small sampling of the events you can get when you parse an
XML document:

• The startDocument event.

• For each element, a startElement event at the start of the element,
and an endElement event at the end of the element.

• If an element contains content, there will be events such as characters
for additional text, startElement and endElement for child elements,
and so forth.

• The endDocument event.

As with DOM, a SAX parser won't reveal certain details like the order in which
attributes appeared.

JDOM

Although SAX and DOM provide many useful functions, some tasks are more
complicated than developers would like them to be. In keeping with the open source
community's history of creating tools wherever a need exists, Java technology
experts Jason Hunter and Brett McLaughlin created JDOM, a Java library that
greatly simplifies working with XML documents.
Like DOM, JDOM provides a tree of objects that represent the XML document, but
the way those objects work is much more intuitive for Java programmers. Keep in
mind that JDOM includes adapters for using ordinary SAX or DOM parsers in the
background; JDOM provides adapters for all major (and several minor) Java XML
parsers, so you don't have to worry about whether your Java XML parser supports
JDOM or not. JDOM uses a parser in the background without any intervention from
you.

How to choose a parser

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 1
Page 6 of 28 © Copyright IBM Corporation 1994, 2005. All rights reserved.

resources.html
resources.html
http://www.ibm.com/legal/copytrade.shtml

I'll talk about this in a lot more detail later, but in general, you should use a DOM
parser when:

• You need to know a lot about the structure of a document

• You need to change the structure of a document (maybe you want to sort
elements, add some new ones, and so forth)

• You need to refer to the parsed information more than once

Continuing these broad generalizations, you should use a SAX parser when:

• You don't have much memory (your machine doesn't have much memory,
that is)

• You only need a few elements or attributes from the XML document

• You'll only use the parsed information once

Finally, take a look at the JDOM API. JDOM's memory usage is less than DOM, but
not as good as SAX. Also, if you want to do validation (a topic I don't discuss in this
tutorial), JDOM requires that you configure the underlying parser; JDOM doesn't do
validation itself. That being said, if JDOM does everything you need and it works
quickly enough for you, it will simplify the coding you have to do.

Section 3. The Document Object Model (DOM)

A common interface for XML structures

The DOM is an interface for working with the structure of XML documents. A project
of the W3C, the DOM was designed to provide a set of objects and methods to
make life simpler for programmers. (Technically, the DOM predates XML; the early
DOM work was meant for HTML documents.) Ideally, you should be able to write a
program that uses one DOM-compliant parser to process an XML document, then
switch to another DOM-compliant parser without changing your code.
When you parse an XML document with a DOM parser, you get a hierarchical data
structure (a DOM tree) that represents everything the parser found in the XML
document. You can then use functions of the DOM to manipulate the tree. You can
search for things in the tree, move branches around, add new branches, or delete
parts of the tree.
As I mentioned earlier, certain information is not available from the XML parser.
Individual parsers might implement functions that let you get more information about
the source document, but those functions are not part of the DOM, and aren't likely
to work with any other parser. See the XML Infoset standard (in Resources) for more
information.

Know your Nodes

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 1
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 7 of 28

resources.html
http://www.ibm.com/legal/copytrade.shtml

You already know that a DOM parser returns a tree structure to you; that DOM tree
contains a number of Node s. From a Java-language perspective, a Node is an
interface. The Node is the base datatype of the DOM; everything in a DOM tree is a
Node of one type or another.
DOM Level 1 also defines a number of subinterfaces to the Node interface:

• Element: Represents an XML element in the source document.

• Attr: Represents an attribute of an XML element.

• Text: The content of an element. This means that an element with text
contains text node children; the text of the element is not a property of the
element itself.

• Document: Represents the entire XML document. Exactly one Document
object exists for each XML document you parse. Given a Document
object, you can find the root of the DOM tree; from the root, you can use
DOM functions to read and manipulate the tree.

Additional node types are: Comment, which represents a comment in an XML file;
ProcessingInstruction, which represents a processing instruction; and
CDATASection, which represents a CDATA section. Chances are you won't need
these node types, but they're there if you need them.
Note: The words "element" and "tag" have different meanings. An element is a
starting element, an ending element, and everything in between, including attributes,
text, comments, and child elements. A tag is a pair of <angle brackets> and
everything between them, including the element name and any attributes. For
example, <p class="blue"> is a tag, as is </p>; <p class="blue">The
quick brown fox</p> is an element.

Common DOM methods

When you're working with the DOM, you'll often use the following methods:

• Document.getDocumentElement(): Returns the root of the DOM
tree. (This function is a method of the Document interface; it isn't defined
for other subtypes of Node.)

• Node.getFirstChild() and Node.getLastChild(): Return the first
or last child of a given Node.

• Node.getNextSibling() and Node.getPreviousSibling():
Return the next or previous sibling of a given Node.

• Element.getAttribute(String attrName): For a given Element,
return the value of the attribute named attrName. If you want the value
of the "id" attribute, use Element.getAttribute("id"). If that
attribute doesn't exist, the method returns an empty string ("").

Your first sample application!

For your first application, I'll show you DomOne.java, a simple piece of Java code

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 1
Page 8 of 28 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

that does four things:

1. Scans the command line for the name of an XML file

2. Creates a parser object

3. Tells the parser object to parse the XML file named on the command line

4. Walks through the resulting DOM tree and prints the contents of the
various nodes to standard output

That's it! Although it's hardly an impressive piece of code, this will illustrate the basic
DOM methods and how you invoke them. I'll move on to more difficult feats later. For
now, take a look at the source code.

Step 1: Scan the command line

Scanning the command line is relatively straightforward. You simply look for an
argument, and assume that argument is a filename or a URI. If no argument is on
the command line, you print an error message and exit:

public static void main(String argv[])
{
if (argv.length == 0 ||

(argv.length == 1 && argv[0].equals("-help")))
{
System.out.println("\nUsage: java DomOne uri");
System.out.println(" where uri is the URI of the XML " +

"document you want to print.");
System.out.println(" Sample: java DomOne sonnet.xml");
System.out.println("\nParses an XML document, then writes " +

"the DOM tree to the console.");
System.exit(1);

}

DomOne d1 = new DomOne();
d1.parseAndPrint(argv[0]);

}

All of the examples in this tutorial have similar code for processing the command
line; I won't discuss this code from this point forward.

Step 2: Create a parser object

Assuming the command line is okay, the next task is to create a parser object.
First-generation XML parsers required you to instantiate a particular class. To use
the Apache XML Project's Xerces parser, you'd instantiate
org.apache.xml.parsers.DOMParser; to use another parser, you would
instantiate a class specific to that parser. The downside of this, of course, is that
switching parsers means you have to change your source code. With today's
parsers, you can use factory classes that shield your code from knowing what parser
class you're using.
Here's how you create the factory object, then have the factory object create the

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 1
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 9 of 28

http://www.ibm.com/legal/copytrade.shtml

parser:

public void parseAndPrint(String uri)
{
Document doc = null;

try
{
DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance();
DocumentBuilder db = dbf.newDocumentBuilder();

. . .

The DocumentBuilder object is your parser. It implements all of the DOM
methods you need to parse and process the XML file. Notice that you're creating
these inside a try statement; a number of things can go wrong when you create a
parser and parse a document, so you need to catch any errors that might occur.
The classes DocumentBuilderFactory and DocumentBuilder are defined by
JAXP. I'll talk about JAXP shortly; if you just can't wait to get the details, see A quick
word about JAXP on page .

Step 3: Parse the XML file

Now that you've created the parser, telling it to parse the file (or URI) is simple:

doc = db.parse(uri);

That's it! You may remember from Step 2 that doc is an instance of the Document
interface. In other words, parsing the XML file gives you a Document structure that
you can examine to determine what your XML file contains.

Step 4: Print the contents of the DOM tree

The final task is to print the contents of the DOM tree. Because everything in a DOM
tree is a Node of one type or another, you'll use a recursive method to go through
the tree and print everything in it. The strategy will be to call the method to print a
node. The method will print that node, then call itself for each of that node's children.
If those children have children, the method will call itself for them as well. Here's a
sample of that code:

if (doc != null)
printDomTree (doc);

. . .
}

public void printDomTree(Node node)
{
int type = node.getNodeType();
switch (type)
{
// print the document element
case Node.DOCUMENT_NODE:
{

System.out.println("<?xml version=\"1.0\" ?>");
printDomTree (((Document)node).getDocumentElement());

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 1
Page 10 of 28 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

break;
}

The printDomTree method takes a Node as its argument. If that Node is a
document node, you'll print out an XML declaration, then call printDomTree for the
document element (the XML element that contains the rest of the document). The
document element will almost certainly have children, so printDomTree will call
itself for each of those children as well. This recursive algorithm walks through the
entire DOM tree and prints its contents to the command line.
Here's how printDomTree handles an element node:

case Node.ELEMENT_NODE:
{

System.out.print("<");
System.out.print(node.getNodeName());

NamedNodeMap attrs = node.getAttributes();
for (int i = 0; i < attrs.getLength(); i++)

printDomTree (attrs.item(i));

System.out.print(">");

if (node.hasChildNodes())
{
NodeList children = node.getChildNodes();
for (int i = 0; i < children.getLength(); i++)

printDomTree (children.item(i));
}

System.out.print("</");
System.out.print(node.getNodeName());
System.out.print('>');

break;
}

For an element node, you need to print a left angle bracket and the node name. If
this element has attributes, you invoke printDomTree for each attribute.
(Technically, you could use Attr.getName() and Attr.getValue() to print the
attributes here, but I'm trying to illustrate that everything in the DOM tree is a Node.)
Once you've printed all the attributes, you invoke printDomTree again for each
child element this node contains. The final step is to print out the ending element
after all of the child elements have been processed.
Processing attribute nodes and text nodes is trivial. For an attribute, you output a
space, the name of the attribute, an equals sign and an opening double quote, the
value of the attribute, and a closing double quote. (This is a shortcut; it's possible for
an attribute's value to contain single or double quotes. Feel free to fix that if you like.)
Processing text nodes is simplest of all; you simply write out the text. Here's the
code for these two node types:

case Node.ATTRIBUTE_NODE:
{

System.out.print(" " + node.getNodeName() + "=\"" +
((Attr)node).getValue() + "\"");

break;
}

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 1
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 11 of 28

http://www.ibm.com/legal/copytrade.shtml

case Node.TEXT_NODE:
{

System.out.print(node.getNodeValue());
break;

}

Although all you're doing here is printing out the contents of the DOM tree, most
XML applications built around the DOM use this four-step pattern, with the fourth
step being a recursive processing routine.
To see the complete source, visit DomOne.java.

Running DomOne

Now for the moment you've no doubt been waiting for -- running this code. I'm
assuming that you've already downloaded and installed the tools you need; if that's
not the case, see Setting up your machine.
From the directory where you unzipped the examples, type:

javac DomOne.java

(Remember that the Java language is case-sensitive.) Assuming there aren't any
errors, type:

java DomOne sonnet.xml

to parse and display the file sonnet.xml.
If everything goes as expected, you should see something like this:

C:\xml-prog-java>java DomOne sonnet.xml
<?xml version="1.0" ?>
<sonnet type="Shakespearean">
<author>
<lastName>Shakespeare</lastName>
<firstName>William</firstName>
<nationality>British</nationality>
<yearOfBirth>1564</yearOfBirth>
<yearOfDeath>1616</yearOfDeath>

</author>
<title>Sonnet 130</title>
<lines>
<line>My mistress' eyes are nothing like the sun,</line>
<line>Coral is far more red than her lips red.</line>
<line>If snow be white, why then her breasts are dun,</line>
<line>If hairs be wires, black wires grow on her head.</line>
. . .

</lines>
</sonnet>

Getting rid of whitespace

The results generated by DomOne include lots of whitespace, including whitespace
between elements. In many cases, you may not care about this whitespace. For
example, the line breaks and spaces used to indent all of the <line> elements

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 1
Page 12 of 28 © Copyright IBM Corporation 1994, 2005. All rights reserved.

DomOne.java
index.html#setup
http://www.ibm.com/legal/copytrade.shtml

aren't significant if all you want to do is get the text of the lines of the sonnet.
Keep in mind that a DOM tree is full of objects, so all of the whitespace nodes are
actually Java objects. Those objects take memory, they take processing time to
create and destroy, and your code has to find them and ignore them. Clearly, if you
could tell the parser not to create these objects at all, that would save time and
memory, always a worthy goal.
Fortunately, JAXP's DocumentBuilderFactory provides a method for ignoring
non-significant whitespace. The
setIgnoringElementContentWhitespace(boolean) method, wordy as it is,
takes the whitespace nodes out of the picture. I'll take a look at it next.

DomTwo

The source code for DomTwo is identical to the source code for DomOne with one
exception: the setIgnoringElementContentWhitespace method. Here's how
the parseAndPrint method looks:

public void parseAndPrint(String uri)
{
Document doc = null;
try
{
DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();

dbf.setIgnoringElementContentWhitespace(true);
DocumentBuilder db = dbf.newDocumentBuilder();
doc = db.parse(uri);
if (doc != null)

printDomTree(doc);
. . .

Notice that setIgnoringElementContentWhitespace() is a method of
DocumentBuilderFactory; you set the property on the factory, then ask it to
create a parser based on the settings you've configured.
If you compile and run DomTwo, your results will be shorter, but considerably less
readable than before:

C:\xml-prog-java>java DomTwo sonnet.xml
<?xml version="1.0" ?>
<sonnet type="Shakespearean"><author><lastName>Shakespeare
</lastName><firstName>William</firstName><nationality>Brit
ish</nationality><yearOfBirth>1564</yearOfBirth><yearOfDea
th>1616</yearOfDeath></author><title>Sonnet 130</title><li
nes><line>My mistress' eyes are nothing like the sun,</lin
e><line>Coral is far more red than her lips red.</line><lin
e>If snow be white, why then her breasts are dun,</line><l
. . .

Although this output isn't easy to read, removing all those whitespace nodes when
you don't need them makes life simpler for your code. If you're generating or
processing an XML document for a machine, ignoring whitespace is probably the
way to go. On the other hand, if you need to format information for a human, the
whitespace will probably be important.
To see the source for DomTwo, check out DomTwo.java.

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 1
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 13 of 28

DomTwo.java
http://www.ibm.com/legal/copytrade.shtml

The Document node

Sometimes the Document node causes confusion. The Document node is different
from the root of the XML document. For example, our XML sonnet could look like
this:

<?xml version="1.0" ?>
<!-- Does this sonnet have a name other than "Sonnet 130"? -->
<sonnet type="Shakespearean">
<author>
. . .
</author>
<title>Sonnet 130</title>
<lines>
. . .
</lines>

</sonnet>
<!-- The title of Sting's 1987 album "Nothing Like the Sun"

came from this sonnet. -->

In this case the Document has three children: The first comment node, the
<sonnet> element, and the last comment. The document root is the <sonnet>
element, which is not the same as the Document node itself.
Most of the time this distinction won't matter, but keep in mind there is a difference
between the two.

A quick word about JAXP

Before I move on to the SAX API, I'll mention a few things about JAXP, the Java API
for XML Parsing. This API specifies certain common tasks that the DOM and SAX
standards leave out. Specifically, creating parser objects is not defined by the DOM
or SAX standards, and DOM does not define turning features of those parsers on
and off.
The javax.xml.parsers package is the only part of JAXP I'll discuss here. (Other
parts of the JAXP specification relate to transforming XML documents, but they're
beyond the scope of this tutorial.) The javax.xml.parsers package defines four
classes:
DocumentBuilderFactory

A factory API that allows you to create a DOM parser. By using the factory API,
your code doesn't have to know the actual class that implements the DOM. If
you find a better DOM parser, you can start using the new parser without
modifying or recompiling your code.

DocumentBuilder
Defines the API that lets you get a DOM Document object from the DOM
parser.

SAXParserFactory
A factory API that lets you create a SAX parser. As with
DocumentBuilderFactory, this API shields you from needing to know the
name of the class that implements the SAX parser.

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 1
Page 14 of 28 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

SAXParser
An API that wraps the SAX XMLReader class. When an XMLReader reads a
file, it generates SAX events.

This section has covered the DocumentBuilderFactory and DocumentBuilder
classes; I'll take a closer look at SAXParserFactory and SAXParser in the next
section.

Section 4. SAX: The Simple API for XML

SAX overview

While the DOM was being defined at the W3C, a number of concerns were raised in
discussion groups on the Web. Some of those concerns were:

• The DOM builds an in-memory tree of an XML document. If the document
is really large, the DOM tree may require an enormous amount of
memory.

• The DOM tree contains many objects that represent the contents of the
XML source document. If you only need a couple of things from the
document, creating all those objects is wasteful.

• A DOM parser must build the entire DOM tree before your code can work
with it. If you're parsing a large XML document, you could experience a
significant delay while waiting for the parser to finish.

Led by David Megginson, the SAX API was defined in response to these concerns.
The standard was created as a grass-roots effort, and is supported by virtually all
XML parsers.

How SAX works

SAX is a push API: You create a SAX parser, and the parser tells you (it pushes
events to you) when it finds things in the XML document. Specifically, here's how
SAX addresses the concerns mentioned in the previous panel:

• SAX doesn't build an in-memory tree of an XML document. A SAX parser
sends you events as it finds things in an XML document. It's up to you to
decide how (or if) you want to store that data.

• A SAX parser doesn't create any objects. You have the option of creating
objects if you want, but that's your decision, not the parser's.

• SAX starts sending you events immediately. You don't have to wait for the
parser to finish reading the document.

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 1
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 15 of 28

http://www.ibm.com/legal/copytrade.shtml

SAX events

The SAX API defines a number of events. Your job is to write Java code that does
something in response to all of those events. Most likely you'll use SAX's helper
classes in your application. When you use the helper classes, you write event
handlers for the few events you care about, and let the helper class do the rest of
the work. If you don't handle an event, the parser discards it, so you don't have to
worry about memory usage, unnecessary objects, and other concerns you'd have if
you were using a DOM parser.
Keep in mind that SAX events are stateless. In other words, you can't look at an
individual SAX event and figure out its context. If you need to know that a certain
piece of text occurred inside a <lastName> element that's inside an <author>
element, it's up to you to keep track of what elements the parser has found so far. All
the SAX event will tell you is, "Here's some text." It's your job to figure out what
element that text belongs to.

Some commonly used SAX events

In a SAX-based XML application, you'll spend most of your time looking at five basic
events. I'll cover those here, and take a look at error handling events later.
startDocument()

Tells you that the parser has found the start of the document. This event
doesn't pass you any information, it simply lets you know that the parser is
about to begin scanning the document.

endDocument()
Tells you that the parser has found the end of the document.

startElement(...)
Tells you that the parser has found a start tag. This event tells you the name of
the element, the names and values of all of the element's attributes, and gives
you some namespace information as well.

characters(...)
Tells you that the parser has found some text. You get a character array, along
with an offset into the array and a length variable; together, those three
variables give you the text the parser found.

endElement(...)
Tells you that the parser has found an end tag. This event tells you the name of
the element, as well as the associated namespace information.

startElement(), characters(), and endElement() are the most important
events; I'll take a closer look at those events next. (startDocument and
endDocument simply tell you when parsing starts and ends.) All of the events here
are part of the ContentHandler interface; other SAX interfaces are defined to
handle errors as well as entities and other rarely-used things.

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 1
Page 16 of 28 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The startElement() event

The startElement() event tells you that the SAX parser has found the start tag
for an element. The event has four parameters:
String uri

The namespace URI. In these examples, none of the XML documents use
namespaces, so this will be an empty string.

String localName
The unqualified name of the element.

String qualifiedName
The qualified name of the element. This is the namespace prefix combined with
the local name of the element.

org.xml.sax.Attributes attributes
An object that contains all of the attributes for this element. This object provides
several methods to get the name and value of the attributes, along with the
number of attributes the element has.

If your XML application is looking for the contents of a particular element, the
startElement() event tells you when that element begins.
Note: Processing namespaces requires a namespace-aware parser. By default, the
parsers created by the SAXParserFactory and DocumentBuilderFactory
objects are not namespace aware. I'll discuss namespaces in more detail in an
upcoming tutorial on advanced XML programming.

The characters() event

The characters() event contains the characters that the parser has found in the
source file. In the spirit of minimizing memory consumption, this event contains an
array of characters; this is more lightweight than a Java String object. Here are the
parameters for the characters() event:
char[] characters

An array of characters found by the parser. The start and length
parameters indicate the portion of the array that generated this event.

int start
The index of the first character in the characters array that belongs to this
event.

int length
The number of characters in this event.

If your XML application needs to store the contents of a particular element, the
characters() event handler is where you'll put the code that stores the content.
Note: The SAX standard does not specify the contents of the characters array
outside the characters related to this event. It might be possible to look in the
character array to find details on previous or future events, but that's not advisable.

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 1
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 17 of 28

http://www.ibm.com/legal/copytrade.shtml

Even if a given parser supplies those extra characters in the current release, future
releases of the parser are free to change the way the characters outside the current
event are handled.
The bottom line: It might be tempting to look outside the range specified by start
and length, but don't.

The endElement() event

The endElement() event tells you that the parser has found the end tag for a
particular element. It has three parameters:
String uri

The namespace URI.

String localName
The unqualified name of the element.

String qualifiedName
The qualified name of the element. This is the namespace prefix combined with
the local name of the element.

A typical response to this event is to modify state information in your XML
application.

Your first SAX application

Now that you've seen the most common SAX events, I'll show you a simple SAX
application. This application, SaxOne.java, will work similarly to your first DOM
application, DomOne.java. This SAX application will write the contents of events
out to the console, so when you run java SaxOne sonnet.xml, the results
should be the same results you got earlier from DomOne.
You code has three tasks. These are almost identical to the four tasks DomOne had:

• Scan the command line for the name (or URI) of an XML file.

• Create a parser object.

• Tell the parser object to parse the XML file named on the command line,
and tell it to send your code all of the SAX events it generates.

For DomOne, you had four tasks because you processed the DOM tree after parsing
was complete; because you're using SAX here, the processing happens during
parsing. When parsing is finished, you're through with the SAX events.
I'll examine the three tasks in more detail next.

SAX step 1: Scan the command line

As with DomOne, you simply scan the command line for an argument. If there isn't an
argument, you print an error message and exit. Otherwise, you assume that the first
argument is the name or URI of an XML file:

public static void main(String argv[])

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 1
Page 18 of 28 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

{
if (argv.length == 0 ||

(argv.length == 1 && argv[0].equals("-help")))
{
// Print an error message and exit...

}
SaxOne s1 = new SaxOne();
s1.parseURI(argv[0]);

}

SAX step 2: Create a parser object

Your next task is to create a parser object. You'll use JAXP's SAXParserFactory
API to create a SAXParser:

public void parseURI(String uri)
{
try
{
SAXParserFactory spf = SAXParserFactory.newInstance();

SAXParser sp = spf.newSAXParser();
. . .

That's all you need to do. Your final step is to have the SAXParser actually parse
the file.
(In case you missed the brief discussion of JAXP, see A quick word about JAXP in
the DOM section of this tutorial.)

SAX step 3: Parse the file and handle any events

Now that you've created your parser object, you need to have it parse the file. That's
done with the parse() method:

. . .

sp.parse(uri, this);
}
catch (Exception e)
{
System.err.println(e);

}
}

Notice that the parse() method takes two arguments. The first is the URI of the
XML document, while the second is an object that implements the SAX event
handlers. In the case of SaxOne, you're extending the SAX DefaultHandler
interface:

public class SaxOne
extends DefaultHandler

DefaultHandler has an implementation of a number of event handlers. These
implementations do nothing, which means all your code has to do is implement

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 1
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 19 of 28

section3.html#jaxp
http://www.ibm.com/legal/copytrade.shtml

handlers for the events you care about.
Note: The exception handling above is sloppy; as an exercise for the reader, feel
free to handle specific exceptions, such as SAXException or
java.io.IOException.

Implementing event handlers

When you told your SAXParser to parse the file, you claimed that SaxOne extends
the DefaultHandler interface. The final thing I'll show you is how SaxOne
implements some of the event handlers in that interface. A major benefit of the
DefaultHandler interface is that it shields you from having to implement all of the
event handlers. DefaultHandler implements all of the event handlers; you just
implement the ones you care about.
First, here's what you do for startDocument():

public void startDocument()
{
System.out.println("<?xml version=\"1.0\"?>");

}

This is clearly cheating; you're simply writing out a basic XML declaration, regardless
of whether one was in the original XML document or not. Currently the base SAX
API doesn't return the details of the XML declaration, although an extension API
(defined in SAX2 Version 1.1) has been proposed to give you that information.
Next, here's what you do for startElement():

public void startElement(String namespaceURI, String localName,
String rawName, Attributes attrs)

{
System.out.print("<");
System.out.print(rawName);
if (attrs != null)
{
int len = attrs.getLength();
for (int i = 0; i < len; i++)
{

System.out.print(" ");
System.out.print(attrs.getQName(i));
System.out.print("=\"");
System.out.print(attrs.getValue(i));
System.out.print("\"");

}
}
System.out.print(">");

}

You print the name of the element, then you print all of its attributes. When you're
done, you print the ending bracket (>). As I mentioned before, for empty elements
(elements such as XHTML's <hr/>), you get a startElement() event followed
by an endElement() event. You have no way of knowing whether the source
document was coded <hr/> or <hr></hr>.

More event handling

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 1
Page 20 of 28 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The next important handler is the characters() handler:

public void characters(char ch[], int start, int length)
{
System.out.print(new String(ch, start, length));

}

Because all you're doing here is printing the XML document back to the console,
you're simply printing the portion of the character array that relates to this event.
The next two handlers I'll show you are endElement() and endDocument():

public void endElement(String namespaceURI, String localName,
String rawName)

{
System.out.print("</");
System.out.print(rawName);
System.out.print(">");

}

public void endDocument()
{

}

When you get the endElement() event, you simply write out the end tag. You're
not doing anything with endDocument(), but it's listed here for completeness.
Because the DefaultHandler interface ignores endDocument() by default, you
could leave this method out of your code and get the same results.
Next, I'll take a look at error handling in SAX applications.

Error handling

SAX defines the ErrorHandler interface; it's one of the interfaces implemented by
DefaultHandler. ErrorHandler contains three methods: warning, error, and
fatalError.
warning corresponds to a warning, a condition not defined as an error or a fatal
error by the XML specification. error is called in response to an error event; as an
example, the XML Spec defines breaking a validity rule as an error. I haven't
covered validity checking, but a sonnet that doesn't contain 14 <line> elements
would be an error. Finally, fatalError is defined by the XML spec as well; an
attribute value that isn't quoted is a fatal error.
The three events defined by ErrorHandler are:
warning()

Issued in response to a warning as defined by the XML specification.

error()
Issued in response to what the XML spec considers an error condition.

fatalError()
Issued in response to a fatal error as defined by (you guessed it) the XML
spec.

Warnings and errors are typically related to things like entities and DTDs (topics I'm

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 1
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 21 of 28

http://www.ibm.com/legal/copytrade.shtml

not discussing here), while fatal errors tend to be violations of basic XML syntax
(tags that aren't nested properly, for example). Here's the syntax of the three error
handlers:

public void warning(SAXParseException ex)
{
System.err.println("[Warning] "+

getLocationString(ex)+": "+
ex.getMessage());

}

public void error(SAXParseException ex)
{
System.err.println("[Error] "+

getLocationString(ex)+": "+
ex.getMessage());

}

public void fatalError(SAXParseException ex)
throws SAXException

{
System.err.println("[Fatal Error] "+

getLocationString(ex)+": "+
ex.getMessage());

throw ex;
}

The handlers above use a private method named getLocationString to give
more details about the error. The SAXParseException class defines methods
such as getLineNumber() and getColumnNumber() to provide the line and
column number where the error occurred. getLocationString merely formats
this information into a useful string; putting this code into a separate method means
you don't have to include this code in every error handler. See SaxOne.java for all
the details.

Running SaxOne

Running SaxOne is pretty simple. First of all, make sure you've set up the XML
parser and code samples as described in Setting up your machine. Next, simply type
java SaxOne sonnet.xml. You should see something like this:

C:\xml-prog-java>java SaxOne sonnet.xml
<?xml version="1.0" ?>
<sonnet type="Shakespearean">
<author>
<lastName>Shakespeare</lastName>
<firstName>William</firstName>
<nationality>British</nationality>
<yearOfBirth>1564</yearOfBirth>
<yearOfDeath>1616</yearOfDeath>

</author>
<title>Sonnet 130</title>
<lines>
<line>My mistress' eyes are nothing like the sun,</line>
<line>Coral is far more red than her lips red.</line>
<line>If snow be white, why then her breasts are dun,</line>
<line>If hairs be wires, black wires grow on her head.</line>
. . .

</lines>

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 1
Page 22 of 28 © Copyright IBM Corporation 1994, 2005. All rights reserved.

SaxOne.java
index.html#setup
http://www.ibm.com/legal/copytrade.shtml

</sonnet>

To see the complete code listing, look at SaxOne.java.

Dealing with whitespace in SAX applications

You probably noticed that running SaxOne gave you nicely-formatted XML. That's
because you're keeping all of the whitespace nodes that were in the original XML
document. SaxOne implements the ignorableWhitespace() method:

public void ignorableWhitespace(char ch[], int start, int length)
{
characters(ch, start, length);

}

All this method does is call the characters() event with the same parameters (
ignorableWhitespace() and characters() have the same signature). If you
want to leave out the whitespace, simply remove the ignorableWhitespace()
handler from your code. Here are the results from the SaxTwo application:

C:\xml-prog-java>java SaxTwo sonnet.xml
<?xml version="1.0" ?>
<sonnet type="Shakespearean"><author><lastName>Shakespeare
</lastName><firstName>William</firstName><nationality>Brit
ish</nationality><yearOfBirth>1564</yearOfBirth><yearOfDea
th>1616</yearOfDeath></author><title>Sonnet 130</title><li
nes><line>My mistress' eyes are nothing like the sun,</lin
e><line>Coral is far more red than her lips red.</line><lin
e>If snow be white, why then her breasts are dun,</line><l
. . .

If you'd like to see all the source code for SaxTwo, check SaxTwo.java.

Section 5. JDOM

JDOM overview

Another response to the perceived complexity of the Document Object Model is
JDOM. Created by Brett McLaughlin and Jason Hunter, it uses the 80-20 rule to
provide a simple API for 80% of the most common XML processing functions. It
doesn't attempt to replace the DOM, and it only works in the Java language at this
point.
As you'll see in this section, JDOM makes some common tasks extremely easy.
Parsing is simple. Adding items to a parsed XML document is simple. Writing a
parsed XML document as an XML file is simple.
An aside on the 80-20 rule: In the software industry, this means that 80% of the
usefulness of your software comes from 20% of your code. JDOM's goal is to write

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 1
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 23 of 28

SaxOne.java
SaxTwo.java
http://www.ibm.com/legal/copytrade.shtml

that 20% and provide a simple API for it. The first expression of the 80-20 rule was
made by Italian economist Vilfredo Pareto in 1906, when he observed that 80% of
the land in Italy was owned by 20% of the people. The Pareto principle (aka the
80-20 rule) was conceptualized in the 1930s by quality guru Dr. Joseph Juran; in the
following years, scientists in many other disciplines noticed that 20% of something
was often responsible for 80% of the results. If you'd like to impress your friends with
more trivia about the 80-20 rule, visit http://www.juran.com/search_db.cfm and
search for "Pareto."

Goals of JDOM

To quote from the JDOM Web site (see Resources), "There is no compelling reason
for a Java API to manipulate XML to be complex, tricky, unintuitive, or a pain in the
neck." Using JDOM, XML documents work like Java objects and use Java
collections. I'll show you two JDOM applications similar to DomOne and DomTwo;
you'll notice that the applications are much smaller.
It's important to note that JDOM integrates with both DOM and SAX. You can use
DOM trees or SAX events to build JDOM documents. Once you have a JDOM
document, you can convert it to a DOM tree or to SAX events easily.

JdomOne

As you'd expect, the code for JdomOne is structurally similar to DomOne and
SaxOne. Fortunately, the code you have to write is much smaller. First you check
the command line for an XML file name, then you have the logic of the program:

try
{
SAXBuilder sb = new SAXBuilder();
Document doc = sb.build(new File(argv[0]));
XMLOutputter xo = new XMLOutputter();
xo.output(doc, System.out);

}
catch (Exception e)
{
e.printStackTrace();

}

That's it! Notice that JDOM defines an XMLOutputter class that writes the XML file
out to the command line. Outputting a parsed document as XML source is a
common task, so JDOM provides a class to do that for you. For the first two lines of
code here, both SAXBuilder and Document are part of the JDOM package (
org.jdom.input.SAXBuilder and org.jdom.Document, respectively).
If you're combining JDOM and DOM, be aware that some classes (such as
Document) are defined by both packages. You have to fully qualify those class
names so that the Java compiler knows which Document you're talking about.

Running JdomOne

Before you run a JDOM application, you need to set up your machine as described
in Setting up your machine. Running JdomOne gives you the same results as your

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 1
Page 24 of 28 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.juran.com/search_db.cfm
resources.html
index.html#setup
http://www.ibm.com/legal/copytrade.shtml

earlier DOM and SAX applications:

C:\xml-prog-java>java JdomOne sonnet.xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sonnet SYSTEM "sonnet.dtd">
<sonnet type="Shakespearean">
<author>
<lastName>Shakespeare</lastName>
<firstName>William</firstName>
<nationality>British</nationality>
<yearOfBirth>1564</yearOfBirth>
<yearOfDeath>1616</yearOfDeath>

</author>
<title>Sonnet 130</title>
<lines>
<line>My mistress' eyes are nothing like the sun,</line>
<line>Coral is far more red than her lips red.</line>
<line>If snow be white, why then her breasts are dun,</line>
<line>If hairs be wires, black wires grow on her head.</line>
. . .

</lines>
</sonnet>

Notice that JDOM added the encoding attribute to the XML declaration and added
the DOCTYPE declaration. The complete source code is in JdomOne.java.

Removing whitespace

To provide a JDOM version of DomTwo, you need to remove all of the ignorable
whitespace. As you'd expect, JDOM makes it easy to do this. Here's how the code
looks:

SAXBuilder sb = new SAXBuilder();
Document doc = sb.build(new File(argv[0]));
XMLOutputter xo = new XMLOutputter();
xo.setTrimAllWhite(true);
xo.output(doc, System.out);

All you have to do is add the setTrimAllWhite() method to your code. You tell
the XMLOutputter to remove all of the whitespace, and get the results you'd
expect.
For the complete sample, see JdomTwo.java.

The joys of JDOM

At this point, you should have a good idea of the simplicity of JDOM. You should
definitely take a look at this API; if it does everything you need, it can greatly simplify
your development process. Best of all, JDOM has adapters for all the common XML
parsers (Xerces from the Apache XML Project, Oracle's XML parser, Crimson from
Sun, an adapter for the JAXP APIs, and an adapter for the IBM's XML4J parser).
Although it's beyond the scope of this tutorial, you can also create your own adapter
to make other data sources look like XML documents. For example, you could have
information from a relational database or an LDAP directory appear to be an
ordinary DOM tree. You could then use JDOM methods to manipulate that data any
way you want.

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 1
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 25 of 28

JdomOne.java
JdomTwo.java
http://www.ibm.com/legal/copytrade.shtml

Section 6. Summary

Summary

This tutorial has shown you several different parsers and interfaces for working with
XML documents in Java technology. The interfaces are portable across different
parser implementations, meaning you can change the infrastructure behind your
XML application without changing your source code. The tutorial also discussed the
strengths and weaknesses of the various APIs, and looked at some scenarios for
using XML and the various APIs to solve real-world problems.
I hope this gets you started writing your own XML applications in the Java language.

What wasn't covered

To keep this tutorial at a manageable length, I didn't cover a number of advanced
topics. I will cover all of these in an advanced XML programming tutorial here at
developerWorks. Some of the topics to be covered are:

• Handling namespaces

• Validation with DTDs and XML schema languages

• Converting between APIs (generating DOM trees from SAX events, for
example)

• Creating DOM and JDOM objects without an XML source document

• Stopping a SAX parser before it finishes reading the XML source

• Moving nodes around in a DOM tree

• DOM serialization functions

• Advanced DOM topics (ranges, traversal, and other parts of the Level 2
and Level 3 specs)

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 1
Page 26 of 28 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Tutorials

• "Introduction to XML" covers the basics of XML. A good place to start if
you're new to markup languages (developerWorks, August 2002).

• "Understanding DOM" covers the Document Object Model in far more
depth than I've covered here (developerWorks, July 2003).

• "Understanding SAX" gives an in-depth overview of the Simple API for
XML (developerWorks, July 2003).

• Books

• Learning XML, 2nd Edition, by Erik T. Ray, published by O'Reilly, is a very
good (and very popular) book for XML beginners
(http://www.oreilly.com/catalog/learnxml2/).

• XML in a Nutshell, 2nd Edition, by Elliotte Rusty Harold and W. Scott
Means, published by O'Reilly, is a great reference to keep on your desk,
especially if you know the basics of XML
(http://www.oreilly.com/catalog/xmlnut2/).

• Processing XML with Java: A Guide to SAX, DOM, JDOM, JAXP, and
TrAX, by Elliotte Rusty Harold (published by Addison-Wesley) is an
in-depth look at all of the APIs I've covered here
(http://www.awprofessional.com). The author is one of the XML
community's leading authors. (The Addison-Wesley Web site doesn't have
a direct link to the book; search for "Processing XML" to find the book's
Web page.)

• Java and XML, 2nd Edition, by Brett McLaughlin, is another excellent
discussion of using the APIs covered here with Java technology
(http://www.oreilly.com/catalog/javaxml2/).

• O'Reilly's SAX2 is the best source I've seen for in-depth information about
the SAX API (http://www.oreilly.com/catalog/sax2/). It's written by David
Brownell, the maintainer of SAX, so buying the book helps David continue
his work.

• Specs

• The DOM Level 1 spec is available at the W3C's Web site
(http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/). All the specs
for DOM Levels 1, 2, and 3 are available on the DOM Technical Reports
page at the W3C (http://www.w3.org/DOM/DOMTR).

• A formal JDOM spec has not been written at this point (January 2004); the
JDOM Web site states that the JDOM Javadoc files are the spec for now
(http://www.jdom.org/docs/apidocs/). In addition, the JDOM documentation

ibm.com/developerWorks developerWorks®

XML programming in Java technology, Part 1
© Copyright IBM Corporation 1994, 2005. All rights reserved. Page 27 of 28

http://www.ibm.com/developerworks/edu/x-dw-xmlintro-i.html?S_TACT=105AGX06&S_CMP=TUT
http://www.ibm.com/developerworks/edu/x-dw-xudom-i.html?S_TACT=105AGX06&S_CMP=TUT
http://www.ibm.com/developerworks/edu/x-dw-xusax-i.html?S_TACT=105AGX06&S_CMP=TUT
http://www.oreilly.com/catalog/learnxml2/
http://www.oreilly.com/catalog/xmlnut2/
http://www.awprofessional.com
http://www.awprofessional.com
http://www.oreilly.com/catalog/javaxml2/
http://www.oreilly.com/catalog/sax2/
http://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/
http://www.w3.org/DOM/DOMTR
http://www.jdom.org/docs/apidocs/
http://www.ibm.com/legal/copytrade.shtml

page has a list of useful JDOM articles
(http://www.jdom.org/downloads/docs.html).

• All things SAX, including a quick-start document, a discussion of the APIs,
and the SAX Javadoc files, are at www.saxproject.org.

• I mentioned XML Infoset briefly in the Introduction section; you can see
the Infoset spec in all its glory at the W3C's Web site
(http://www.w3.org/TR/xml-infoset/).

• Additional resources

• Check out Brett McLaughlin's "XML and Java Technology" forum for more
information on how these two technologies intersect.

• Find a broad array of articles, columns, tutorials, and tips on these two
popular technologies at the developerWorks Java technology and XML
content areas.

• Find out how you can become an IBM Certified Developer in XML and
related technologies.

About the author

Doug Tidwell
(This biography was written by Lily Castle Tidwell, the author's daughter.)
My daddy's name is Doug Tidwell. He has black hair. Daddy wears glasses. He is six
feet tall. His eyes are brown.
Daddy likes to play catch with me. He likes to run. He's really fast. He is a really good
bike rider. His bike is blue.
My daddy's job is to travel. He goes to China a lot. He has hiked the Great Wall of
China. He got a certificate.
I LOVE YOU DADDY!
P.S. Every day that has a d in it, you are the goofiest.
You can contact the author, Doug Tidwell, at dtidwell@us.ibm.com.

developerWorks® ibm.com/developerWorks

XML programming in Java technology, Part 1
Page 28 of 28 © Copyright IBM Corporation 1994, 2005. All rights reserved.

http://www.jdom.org/downloads/docs.html
http://www.saxproject.org/
http://www.w3.org/TR/xml-infoset/
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=262&cat=11
http://www.ibm.com/developerworks/java/
http://www.ibm.com/developerworks/xml
http://www-1.ibm.com/certify/certs/adcdxmlrt.shtml
http://www-1.ibm.com/certify/certs/adcdxmlrt.shtml
mailto:dtidwell@us.ibm.com
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Introduction
	About this tutorial
	Programming interfaces
	About the examples
	Setting up your machine

	Parser basics
	The basics
	How to use a parser
	Kinds of parsers
	Validating versus non-validating parsers
	Why use a non-validating parser?
	Parsers that support XML Schema languages
	The Document Object Model (DOM)
	What you get from a DOM parser
	The Simple API for XML (SAX)
	What you get from a SAX parser
	JDOM
	How to choose a parser

	The Document Object Model (DOM)
	A common interface for XML structures
	Know your Nodes
	Common DOM methods
	Your first sample application!
	Step 1: Scan the command line
	Step 2: Create a parser object
	Step 3: Parse the XML file
	Step 4: Print the contents of the DOM tree
	Running DomOne
	Getting rid of whitespace
	 DomTwo
	The Document node
	A quick word about JAXP

	SAX: The Simple API for XML
	SAX overview
	How SAX works
	SAX events
	Some commonly used SAX events
	The startElement() event
	The characters() event
	The endElement() event
	Your first SAX application
	SAX step 1: Scan the command line
	SAX step 2: Create a parser object
	SAX step 3: Parse the file and handle any events
	Implementing event handlers
	More event handling
	Error handling
	Running SaxOne
	Dealing with whitespace in SAX applications

	JDOM
	JDOM overview
	Goals of JDOM
	 JdomOne
	Running JdomOne
	Removing whitespace
	The joys of JDOM

	Summary
	Summary
	What wasn't covered

	Resources
	About the author

