

A Concentrated Guide

To

Sun Certified Programmer for Java 2
platform exam (310-025)

Collected, prepared & organized by:
Eng.\ Ashraf Fouad Ayoub
Eng.\ Ashraf Samir Helmy

Cairo, Egypt

Document version control

Date Author Version Comment
12/09/2001 Ashraf Fouad 1.0 beta Creation

Note To Holders:
If you receive an electronic copy of this document and print it out, please write your name on
the equivalent of the cover page, for document control purposes.

If you receive a hard copy of this document, please write your name on the front cover, for
document control purposes.

 Introduction
To all who downloaded this document, and preparing for sun certification programmer exam, I
think this document will help you a lot, because:

1- It collects its information mainly from the best 3 certification preparation books as
mentioned by most certified individuals and previews in www.amazon.com :

(a) �A programmer�s guide to Java Certification�
(b) �The complete Java 2 certification study guide�
(c) �Java 2 exam cram�

2- Supplied with examples, diagrams.
3- Supplied with tips for most common exam mistakes.
4- Well organized as the exam objectives.
5- Concentrate on the certification material, so you can study from it, and if you need to

know more about a topic or don�t have previous experience in it, you don�t have to buy
a certification book, but any Java book will do the trick.

6- It was meant to be a complete document, no need for other, it target programmers
with min. 2 to 4 month of experience in java.

7- Can be also used as a quick revision on the exam points as it is nearly 100 pages.
8- Can be used as a course material for teaching courses in Java certification as I intend to

do in my company.

I (Ashraf Fouad) studied for the certification and passed the exam scoring 93%; nothing in
the exam was outside the document, but I think I needed to solve more exams than I did. Also
one of my friends studied from it and scored 84% and he told me that nothing was needed
more than this document. I wish that as many can also contribute in supplying more tips than
I mentioned, so I intend to keep receiving comments from you till the end of this year before
making its final release.

This document is supplied in .pdf format with the name scpj2vX.pdf where X indicates
document version number. It will come in a zip file named scpj2vX.zip in addition to a doc file
named scpj2qavX.doc for my exam questions I met during preparation which I collected for
the following reasons:

1- Hard or tricky question.
2- It came in several exams so you must have an exercise on such question type.
3- Type of question that you don�t expect to be asked in exam, but they ask, such as

asking about Object Oriented concepts.

Authors:
Eng.\Ashraf Fouad Ayoub Eng.\Ashraf Samir Helmy
Web developer Web developer
Alexandria University
Faculty of Engineering
Department of computer science and
automatic control
(1999)

Ain Shams University
Faculty of Engineering
Department of computer and system
engineering
(1999)

For feedback, please mention the following:

For correction:
Mail To*: ashraf_fouad76@yahoo.com
Mail subject*: SCPJ2 document correction
In the mail body:
Document version*: ...
Error in Tip number*: ...
Why error*: ...
Correction*: ...
Reference(If any): ...
If you wish your email is published among the contributors of the documents (Y/N): default (Y)

For commenting:
Mail To*: ashraf_fouad76@yahoo.com
Mail subject*: SCPJ2 document comment
In the mail body:
Document version*: ...
Comment*: ...
If you wish your email & opinion is published among the previews of the documents (Y/N):
default (Y), this will occur only when I make my site & this document will be part of it.

For adding hints:
Mail To*: ashraf_fouad76@yahoo.com
Mail subject*: SCPJ2 document add hints
In the mail body:
Document version you have*: ...
Suggested chapter to add the hint*: ...
Hint*: ...
Reference*: ...
If you wish your email is published among the contributors of the documents (Y/N): default (Y)

For receiving update of the document:
Mail To*: ashraf_fouad76@yahoo.com
Mail subject*: SCPJ2 document subscribe.

The above are the minimum to send, send more and speak freely as you wish.

For the questions document, I don�t want to receive more questions as the Internet is filled
with enormous already, but I can receive comments to be added for further declaration, or if
anyone doesn�t know explanation of the answers provided and needs more. So please follow
the following direction for sending your comments about questions document.

Mail To*: ashraf_fouad76@yahoo.com
Mail subject*: SCPJ2QA document
In the mail body:
Document version*: ...
Question number*: ...
What is your question*: ...
Anything you want to add(If any): ...
Reference(If any): ...
If you wish your email is published among the contributors of the documents (Y/N): default (Y)

Import Resources:
One of the most important resources to me was www.yahoogroups.com, it contains several
groups for java certification, I encourge subscribing in what you are interested in, but my
advice is to browse the mails through the web not to receive individual or digested mails,
because they are very active groups. I mention hear their names and their description in
yahoogroups, and I will keep always the newest version of this document on the files section of
jcertification group mentioned below.

jcertification-subscribe@yahoogroups.com
Only e-Group for preparation of certification for java programmers. Experts for answering the
questions and discussions. Feel free to post your questions and get the best answers. Ask
anything regarding Java Certification. Register today and tell a friend about this.

javacertstudy-subscribe@yahoogroups.com
JavaCert.com is an online study community for Sun's Java certification exams.

sunjavacert-subscribe@yahoogroups.com

The list basically provides tips for Java aspirants. A list with information on Java Certification,
SCJP, SCJA , SCJD , tips , books , tutorials, downloads, lists, mock and online exams. A list
that can give u that extra niche to get a high score in Java Certification.
scjd-subscribe@yahoogroups.com
The main purpose of this list is to discuss issues/concerns/problems/solutions to your "Sun
Certified Java Developer" assignment.

scjea-subscribe@yahoogroups.com
This mailing list will discuss the Sun enterprise architect exam using J2EE. This is a moderated
list and any message not relevant to it would be deleted. Please check links page before you
post questions on the list. I have about 8 years experience in IT ..I am a MCSD (old and new

course) , SCJP 1.1 and SCJD 2.0 certified professional. Of all the exam I have given I found
the SCJD 2.0 developer exam challenging and I am happy to inform you that I passed it with
flying colors (149 / 155 marks).

java-dev-test-subscribe@yahoogroups.com
We are writing code to pass SCJD exam. Our members are from all over the world. We have
the best Java developer certification website on earth. We all work together to make a
difference!

URLs:
http://suned.sun.com/US/certification/java/java_progj2se.html
http://www.geocities.com/korayguclu/
http://javaquestion.tripod.com/
http://www.anilbachi.8m.com/
http://www.jttc.demon.co.uk/javacert.htm
http://www.jchq.net/
http://members.spree.com/education/javachina/Cert/FAQ_SCJP.htm
http://www.levteck.com/
http://www.software.u-net.com/javaexam/NotCovered.htm
http://www.jaworski.com/java/certification/
http://www.lanw.com/java/javacert/HardestTest.htm
http://www.lanw.com/java/javacert/TestApplet6.htm
http://www.angelfire.com/or/abhilash/Main.html
http://jquest.webjump.com/
http://www.go4java.20m.com/
http://indigo.ie/~dywalsh/certification/index.htm
http://www.michael-thomas.com/
http://www.acmerocket.com/skinny/
http://www.javacaps.com/

Chapter 1:

Language fundamentals

1.1) Java is case-sensitive. [3]

1.2) Source file may contain ONLY ONE public class or interface, and any numbers of

default classes or interfaces. [3]

1.3) If there is a public class or interface, the name of the source file must be the same as

the name of the class or interface. [3]

1.4) The file name may begin with numbers if there is no public class on it. [3]

1.5) If no package is explicit declared, java places your classes into a default package

(Object). [3]

1.6) Identifiers are composed of characters, where each character can be either letter

(including Ŭ Ń ù Ă Ć Å), a connecting punctuation (underscore _) or any currency
symbol (such as $ ¢ £ ¥) and CANNOT start with a digit. [1]

1.7) Keywords are reserved identifiers that are predefined in the language, and CANNOT be

used to denote other entities. NOTE: None of the keywords have a capital letter.
The following table denotes the currently defined keywords: [1] [3]
abstract default if package synchronized
boolean do implements private this
break double import protected throw
byte else instanceof public throws
case extends int return transient
catch final interface short try
char finally long static void
class float native super volatile
continue for new switch while
strictfp I found this in reference [8], but I didn�t find it in any certification

book.

The following table shows three reserved predefined literals: [9]
null true false

The following table shows reserved keywords NOT currently in use: [9]
const goto
byvalue generic outer
cast inner rest
future operator var

I found this in reference [8], but
I didn’t find it in any certification

book.

1.8) Integer literal by default is int, you can specify it as long by appending �L� or �l� as

suffix, NOTE: THERE IS NO WAY to specify a short or byte literal. [1]

1.9) Floating point literal by default is double, you can specify to be a float by appending

�F� or �f� as suffix.[1]

1.10) Octal numbers are specified with �0� as prefix, Hexadecimal numbers are specified with

�0x� or �0X� as prefix.[1]

1.11) Most important Unicode values: [1]

Escape Sequence Unicode Value Character
� � \u0020 Space
�0� \u0030 0
�9� \u0039 9
�A� \u0041 A
�Z� \u005a Z
�a� \u0061 a

�z� \u007a z

1.12) Escape sequences are used to define special character values and can be represented
also in Unicode value, the following table shows them: [1]
Escape Sequence Unicode Value Character
\b \u0008 Backspace
\t \u0009 Horizontal tabulation
\n \u000a Linefeed
\f \u000c Form feed
\r \u000d Carriage return
\� \u0027 Apostrophe-quote
\� \u0022 Quotation mark
\\ \u005c Backslash
\xxx A character in octal

representation; xxx must
range between 000 and
337

\uxxxx A unicode character,
where xxxx is a
hexadecimal format
number.

1.13) The single apostrophe � need not to escaped in Strings, but it would be if specified as a

character literal �\��. [1] [8]
Example:
String tx = �Delta values are labeled \�\u0394\� on the chart.�;

1.14) Regardless of the type of comment, it can�t be nested. [1]

1.15) Default values for member variables table: [1]

Data type Default value
boolean false
char �\u0000�
Integer(byte, short, int, long) 0
Floating-point(float, double) +0.0F or +0.0D
Object reference null

1.16) static variables in a class are initialized to default values when class is loaded if they

are not explicitly initialized. [1]

1.17) Instance variables are initialized to default values when the class is instantiated if they

are not explicitly initialized. [1]

1.18) Local variables (Automatic) are NOT initialized when they are instantiated at method

invocation. The compiler javac reports use of uninitialized local variables. [1]

1.19) There can be ONLY one package declaration in a Java file, and if it appears, it must be

the first non-comment statement. [8]

1.20) The JVM expects to find a method named main with the signature as follows: [8]

public static void main(String[] args)
The array is typically named args, but it could be named anything.
NOTE:
You can have methods named main that have other signatures. The compiler will
compile these without comment, but the JVM will not run an application that does not
have the required signature.

Chapter 2:

Operator and assignments

2.1) Operator precedence and associativity: [1]
Postfix operators [] . (parameters) expression++ expression--
Prefix unary operators ++expression --expression +expression �expression ~ !
Object creation and cast new (type)
Multiplication * / %
Addition + -
Shift << >> >>>
Relational operators < <= > >= instanceof
Equality operators == !=
Bitwise/Logical AND &
Bitwise/Logical XOR ^
Bitwise/Logical OR |
Logical AND &&
Logical OR ||
Conditional operator ?:
Assignment = += -= *= /= %= <<= >>= >>>= &= ^= |=

2.2) Casting between primitive values and references CANNOT be applied. [1]

2.3) ~ (Bit wise inversion) convert all 1�s to 0�s and vise versa. [3]

2.4) The modulo operator % give the value of the remainder of the division of the left

operand (dividend) by the right operand (divisor). [3] [8]

2.5) A useful rule to calculate the modulo: Drop any negative sign from the operands,

calculate the modulo, then the result sign is relative to the left operand (dividend). [3]
Example:
int x = -5 % 2; // x = -1
int y = -5 % -2; // y = -1
int z = 5 % -2; // z = 1

2.6) || and && work with boolean not with integers like & and |, and the result from | - & is

int. NOTE: & and | are used with both boolean and integers. [3]

2.7) Unlike in C, integers in Java can NEVER be interpreted as boolean values, so

expressions used for flow control MUST evaluate to boolean. [8]

2.8) The conditional assignment operator, the ONLY Java operator that takes three

operands:? [1] [3] [8]
<condition>? <expression1>:<expression2>
Example:
String x = (salary < 1500)? �Poor�: �Not poor�;
String y = (salary > 1500)? "Poor": (salary1 < 10)? "poor1":"poor2";

2.9) Multiple assignment: [1]

k = j = 10; // ≡ (k = (j = 10))

2.10) Boolean values CANNOT be casted to other data values, and vice versa, the same

applies to the reference literal null, which is NOT of any type and therefore CANNOT
be casted to any type. [1]

2.11) Conversion is done when: [8]

(a) Assigning a value to a primitive variable.
(b) Evaluating arithmatic expressions.
(c) Matching the signature of methods.

Example:
The Math class has max and min methods in several versions, one for each of int,
long, float, double. Therefore, in the following code that calls Math.max with

one int and one long in line 3, the compiler converts the int primitive to a long
value. The alternative in line 4 forces the compiler to cast the value n to an int
and calls the version of max that uses two int primitives.
int m = 93; //(1)
long n = 91; //(2)
long x = Math.max(m, n); //(3)
int y = Math.max(m, (int) n); //(4)

2.12) Widening primitive conversion is as follows (it doesn�t lose information about the

magnitude of a value), and any other conversion is called narrowing primitive
conversion and may cause lose of information. At runtime, casts that lose information
do not cause a runtime excpetion, and it is up to the programmer to think through all
the implications of the cast. [1] [8]

2.13) Integers of int (32-bit) or smaller can be converted to floating-point representation,

but because a float also uses only 32 bits and must include exponent information,
there can be a loss of precision. [8]

2.14) All six numbers types in Java are signed meaning they can be negative or positive. [3]

2.15) The ONLY integer primitive that is not treated as a signed number is char, which

represents a Unicode character. [8]

2.16) All conversion of primitive�s data types take place at compile time. [3]

2.17) Arithmetic operations:

(a) For unary operators if byte � short - char � converted to int.
(b) For Binary operands:

1. If one of operands is double the other operand is converted to a double.
2. If one of the operand is float, the other operand is converted to float.
3. If one of the operand is long, the other operand is converted to long.

(c) Else both the operands are converted to int.

2.18) Ranges of primitive data types: [1] [3]

Type Bits Bytes Minimum range Maximum range
byte 8 1 -27 27 � 1
short 16 2 -215 215 � 1
char 16 2 \u0000 \uFFFF
int 32 4 -231 231 � 1
long 64 8 -263 263 � 1
float 32 4 1.40129846432481707e-45 3.40282346638528860e+38
double 64 8 4.94065645841246544e-324 1.79769313486231570e+308

2.19) Depending on the storing type of the arithmetic operation the precision is done. [3]

Example:
int x = 7/3; // x = 2
byte b = 64; b *= 4; // b = 0

2.20) The compiler pays attention to the known range of primitives. [8]

Example:
int n2 = 4096L; // (1) would require a specific (int) cast
short s1 = 32000; // (2) OK
short s2 = 33000; // (3) out of range for short primitive

In spite the fact that 4096 would fit in an int primitive, the compiler will object on the
first line because the literal is in long format.
You could force the compiler to accept line 3 with a specific (short) cast, but the result
would be a negative number due to the high bit being set.

2.21) Important examples for arithmetic expression evaluation: [1]

Arithmetic Expression Evaluation Result when printed
4/0 Arithmetic Exception
4.0/0.0 (4.0/0.0) POSITIVE_INFINITY
-4.0/0.0 ((-4.0)/0.0) NEGATIVE_INFINITY
0.0/0.0 (0.0/0.0) NaN

2.22) NaN can result from mathematical functions that are undefined, such as taking the

square root of a negative number. In float to double conversion, if the float has one
of the special values, NaN, POSITIVE_INFINITY, or NEGATIVE_INFINITY, the double ends
up with the corresponding double special values. [8]

2.23) Float.NaN, Double.NaN are considered non-ordinal for comparisons, this means all that

are false: [3]
x < Float.NaN
x == Float.NaN
But you can test by Float.isNaN(float f), Double.isNan(double d).

2.24) While casting special floating-point values, such as NaN, POSITIVE_INFINITY to integer

values, they will be casted without any complaint from the compiler or an exception. [8]

2.25) <variable> <op>=<expression>
 is equivalent to
 <variable> = (<variable type>) (<variable><operator>(<expression>)). [1]

2.26) short h = 40; // OK, within range
 h = h + 2; // Error can�t assign int to short
 Solution for the above situation, choose one of the following: [1]
 h = (short) (h+2);
 h += 2;
 NOTE:
 h = h + (short)2; // Requires additional casting
 Will not work because binary numeric promotion leads to an int values as result of

evaluating the expression on the right-hand side.

2.27) System.out.println(�We put two and two together and get � + 2 + 2);
 Prints: We put two and two together and get 22
 NOT: We put two and two together and get 4
 Declaration: (((�We put two and two together and get �) + 2) + 2). [1]

2.28) If your code conducts operations that overflow the bounds of 32-bit or 64-bit integer

arithmatic, that�s your problem, i.e. Adding 1 to the maximum int value 2147483647
results in the minimum value �2147483648, i.e. the values �wrap-around� for integers,
and no over or underflow is indicated. [1] [8]

2.29) The dot operator has left associativity, in the following example the first call of the

make() returns an object reference that indicates the object to execute the next call,
and so on � [1]
SomeObjRef.make().make().make();

2.30) To get the 2�s complement: [3]

(a) Get the 1�s complement by converting 1�s to 0�s and 0�s to 1�s.

(b) Add 1.

2.31) In the << left shift operator all bytes are moved to the left the number of places you

specify, and zero is padded from the right. [6]

2.32) >> Signed right shift and >>> unsigned right shift work identically for positive numbers,

in >>> operator zeros fill the left most bits, but in >> will propagate the left most one
through the rest of bits. [6]

2.33) When you shift a bit by a numeric value greater than the size in bits, Java does a

modulas shift. [6]

2.34) To shift a negative number get the 2�s complement and then shift it. [3]

2.35) Object reference equality (==, !=): [1]

The equality operator == and the inequality operator != can be applied to object
references to test if they denote the same object. The operands must be type
compatible, i.e. It must be possible to cast one into the other�s type, otherwise it is a
compile time error.
Example:
Pizza pizza_A = new Pizza(�Sweat & Sour�);
Pizza pizza_B = new Pizza(�Hot & Spicy�);
Pizza pizza_C = pizza_A;

String banner = �Come and get it�;

boolean test = banner == pizza_A; // Compile time error
boolean test1 = pizza_A == pizza_B; // false
boolean test2 = pizza_A == pizza_C; // true

2.36) The equals method: [8]

In the Java standard library classes, the method that compares content is always
named equals and takes an Object reference as input. It does not look at the value of
the other object until it has been determined that the other object reference is not null
and that it referes to the same type, else it will return false.
NOTE:
The equals method in the Object class returns true ONLY IF
this == obj
so in the absence of an overriding equals method, the == operator and equals method
are equivalent.

2.37) Using instanceof: if the right-hand operand that MUST name a reference type may
equally will be an interface; In such case the test determines if the object at the left-
hand argument that MUST be a name of a reference variable implements the specified
interface. [3] [8]

2.38) If we compare an object using instanceof and the class we compare with is not in the

hierarchy this will cause compiler error, (Must be on the hierarchy above or bottom the
class). We can overwrite the problem of compiler error caused by instanceof by
declare the class from the Object class. [3]
Example:
Object x = new Button();

2.39) Object reference conversion take place at compile time because the compiler has all the

information it needs to determine whether the conversion is legal or not. [3]

2.40) Short circuit evaluation: [1] [8]

In evaluation of boolean expression involving conditional AND && or OR ||, the left
operand is evaluated before the right one, and the evaluation is short circuited, i.e.: if
the result of the boolean expression can be determined from the left-operand, the right-
hand operand is not evaluated.
NOTE:
when bitwise AND & or bitwise OR | are used in a boolean expression, both operands
are evaluated, and NO short circuit evaluation is applied.

2.41) Parameter passing: All parameters are passed by value. [1]

Data type of the formal parameter Value passed
Primitive data types Primitive data value
Class type Reference value
Array type Reference value

2.42) A formal parameter can be declared with the keyword final preceding the parameter

declaration. A final parameter is also known as blank final variable, i.e. it is blank
(uninitialized) until a value is assigned to it at method invocation. [1]
Example:
public static void bake(final Pizza pizzaToBeBaked) {
 pizzaToBeBaked.meat = �chicken�; // Allowed
 pizzaToBeBaked = null; // Not Allowed
}

Chapter 3:

Declarations and Access Control

3.1) Arrays are a special kind of reference type that does not fit in the class hierarchy but can
always be cast to an Object reference. Arrays also implement the Cloneable interface and
inherit the clone method from the Object class, so an array reference can be cast to a
Cloneable interface. [8]

3.2) Array declaration and constructor:
 <elementType1> <arrayName>[] = new <elementType2> [numberofelements];
 Note:

<elementType2> must be assignable to <elementType1>, i.e.: class or subclass of
<elementType1>, and when the array is constructed, all its elements are initialized to
the default value for <elementType2>, WHATEVER the array is automatic variable or
member variable. [1] [3]

3.3) When constructing multi-dimensional arrays with the new operator, the length of the
deeply nested arrays may be omitted, these arrays are left unconstructed. [1]
Example:
double matrix[][] = new double[3][];

3.4) length of array object is a variable NOT a method. [3]

3.5) It is legal to specify the size of an array with a variable rather than a literal. [3]

3.6) The size of the array is fixed when it is created with the new operator or with special

combined declaration and initialization. [8]

3.7) Anonymous arrays: [1]

new <elementType>[] {<initialization code>}
Example of usage:
class AnonArray {
 public static void main(String[] args) {
 System.out.println(�Minimum value = � + findMin(new int[] {3,5,2}));
 }
 public static int findMin(int[] dataSeq) {
 int min = dataSeq[0];
 for (int index=1; index<dataSeq.length; index++) {
 if (min >= dataSeq[index])
 min = dataSeq[index];
 }
 }
}

3.8) There is NO way to ‘bulk’ initialize an array, if you want to initialize array to certain value

during declaration � you MUST iterate with the value you want. NOTE: Intialization by
means of a bracketed list can be used only in the statement that declares the variable. [8]

3.9) It is possible to create arrays of zero length of any type, a common natural occurrence of
an array of zero length is the array given as an argument to the main() method when a
Java program is run without any program arguments. [1]

3.10) Primitive arrays have no hierarchy, and you can cast a primitive array reference ONLY

to and from an Object reference. Converting and casting array elements follow the
same rules as primitive data types. Look to the strange LEGAL syntax for casting an
array type as shown in line 3 in the following example. [8]
int sizes[] = {4, 6, 8, 10}; //(1)
Object obj = sizes; //(2)
int x = ((int[])obj)[2]; //(3)

3.11) Casting of arrays of reference types follows the same rules as casting single references.
NOTE that an array reference can be converted independantly of whether or not the
array has been populated with references to real objects.[8]
Example:
Suppose you have a class named Extend that extends a class named Base. You could
then use the following code to manipulate a reference to an array of Extend references:
Extend[] exArray = new Extend[20];
Object[] obj = exArray;
Base[]bArray = exArray;
Extend[] temp = (Extend[])bArray;

3.12) An import declaration does not recursively import sub-packages. [1]

3.13) The order of modifiers in class declaration: [3]

(a) public. (optional)
(b) final or abstract. (CANNOT appear together)
(c) class. (mandatory)
(d) classname. (mandatory)
(e) extends. (optional)
(f) superclassname. (mandatory if extends specified)
(g) implements. (optional)
(h) interfacelist. (mandatory if implements specified)
(i) {}. (mandatory)

3.14) If the access modifier is omitted � (package or default accessibility), in which case they

are only accessible in the package but not in any sub-packages. [1]

3.15) The ONLY access modifier allowed to the top level class is public or friendly. [3]

3.16) abstract modifier implies that the class will be extended, but abstract class CANNOT

be instantiated. [3]

3.17) The compiler insists that a class that has an abstract method must be declared

abstract, and this forces its subclasses to provide implementation for this method, and
if a subclass does not provide an implementation of its inherited methods must be
declared abstract. [1]

3.18) it is NOT a MUST for an abstract class to have a abstract method. [10]

3.19) Interfaces as classes CANNOT be declared protected, private, native, static,

synchronized. [3] [8]

3.20) An interface is different from a class in also it can extend MORE than one interface, this

follows from the fact that a class can implement more than one interface. [8]
Example:
public interface RunObs extends Runnable, Observer
Any class implementing this interface will have to provide methods required by both
Runnable and Observer.

3.21) The order of modifiers in method declaration: [3]

(a) public or private or protected. (optional for package declaration)
(b) abstract or final or native or static or synchronized. (optional)
(c) returntype. (mandatory)
(d) methodname. (mandatory)
(e) throws clause. (optional)
(f) {}. (mandatory)

3.22) abstract methods or methods defined in an interface must end with �;�. (i.e. abstract
method is non-functional methods that haven�t body), and abstract methods declared
ONLY on interface or abstract classes. [3]

3.23) The class must be declared abstract if: [3]

(a) The class has one or more abstract methods.
(b) The class inherits one or more abstract methods (from an abstract parent) for which

it doesn�t provide implementation for one or more of the abstract methods of the
parent class.

(c) The class declares that it implements an interface but doesn�t provide implementation
for EVERY method of that interface.

3.24) When abstract class implement interface there is no need to this class to implement all

members of the interface. [3]

3.25) Interfaces just specify the method prototypes and not the implementation; they are by

their nature, implicitly abstract, i.e. they CANNOT be instantiated. Thus specifying an
interface with the keyword abstract is not appropriate, and should be omitted, but it
won�t give compile error if specified. [1]

3.26) final classes CANNOT be extended. Only a class whose definition is complete (i.e. has

implementation of all the methods) can be specified to be final. [1]

3.27) The order of modifiers in variable declaration: [3]

(a) public or private or protected. (optional)
(b) final or static or transient or volatile. (optional)
(c) variable type. (mandatory)
(d) variable name. (mandatory)

3.28) Within a class definition, reference variables of this class�s type can be used to access

all NOT INHERITED members regardless of their accessibility modifiers. [1]
Example:
Class Light {
 // Instance variables
 private int noOfWatts;
 private boolean indicator;
 private String location;

 public void switchOn() {indicator = true;}
 public void switchOff() {indicator = false;}
 public boolean is On() {return indicator;}

 public static Light duplicate (Light oldLight) {
 Light newLight = new Light();
 newLight.noOfWatts = oldLight.noOfWatts;
 newLight.indicator = oldLight.indicator;
 newLight.location = new String(oldLight.location);
 }
}

3.29) ONLY variables, methods and inner classes may be declared protected. [3]

3.30) static members can be called from the member objects. [3]

Example:
this.xyz
NOTE:
The use of this MUST be from a non-static method, or �this cannot be referenced from
a static context� compiler error will be thrown.

3.31) Trying to use object class member before the constructor of the object class member
called will compile fine but will give NullPointerException. [3]
Example:
public class Trial {
 static Date d ;
 public static void main (String args[]) {
 System.out.println(d.getYear());
 }
}

3.32) In local object if u try to check null of a local object before the initialize of it is called �

will cause compilation error that variable might not have been initialized, you can
overwrite this problem by initializing an object with null value. [3]

3.33) Summary of accessibility modifiers for members: [1] [3] [5]

Modifiers Members
public Accessible everywhere.
protected Accessible by any class in the same package as its

class, and accessible only by subclasses of its class
in other packages.

default(no modifier) Only accessible by classes, including subclasses, in
the same package as its class(package
accessibility).

private Only accessible in its own class and not anywhere
else.

 M
ore restrictive

Access
Modifier

Its own
class

Class in
Same
Package

Subclass in
Same
Package

Subclass in
Different
Package

Class in
Different
Package

public Yes Yes Yes Yes Yes
protected Yes Yes Yes Yes No
default Yes Yes Yes No No
private Yes No No No No

3.34) final method CANNOT be abstract and vice versa. [1]

3.35) final method CANNOT be overridden. [3]

3.36) final variables must be initialized before being used even it is member variable (i.e.

take the default value), no default value applied for local final variables. [3]

3.37) You may not change a final object reference variable. [3]

Example:
final Date d = new Date();
 Date d1 = new Date();
 d = d1; // Illegal

3.38) You may change data owned by an object that is referred to by a final object reference
variable. [3]
Example:
final walrus w1 = new walrus(1000);
w1.height = 1800;

3.39) Static method may not be overridden to be non-static and vice versa, i.e. overriding

static methods MUST remain static & non-static MUST also remain non-static. [3]

3.40) You can specify a block of code to be static. [3]

Example:
static { static int x = 1 }

3.41) Summary of other modifiers for members:[1] [8]
Modifiers Variables Methods
static Defines a class variable. Defines a class method.
final Defines a constant. The method cannot be overridden.
abstract Not relevant. No method body is defined; its

class is then implicitly abstract.
synchronized Not relevant. Methods can only be executed by

one thread at a time.
native Not relevant. Declares that the method is

implemented in another language.
transient This variable�s value will not

be persistent (do not need to
be saved) if its object is
serialized.

Not applicable.

volatile The variable�s value can
change asynchronously; the
compiler should not attempt
to optimize it, i.e. signal the
compiler that the designated
variable may be changed by
multiple threads and that it
cannot take any shortcuts
when retrieving the value in
this variable.

Not applicable.

3.42) When you declare a return primitive type from a method you can return less number of

bits: [3]
Return type Can return
short byte � short
int byte � short � int
float byte � short � int � long � float
double byte � short � int � long � float � double

3.43) Instance variables may not be accessed from static methods. [3]

3.44) The scope (visibility) of local variables is restricted to the code block in which they are

declared. [8]

Chapter 4:

Flow Control and Exception handling

4.1) The rule of matching an else clause is that an else clause always refers to the nearest if
which is not already associated with another else clause.[1]

4.2) The compiler always check for unreachable code, and give “Statement not reachable”

error. [3]
Example:
for (int i = 0; i < 10; i++) {
 continue;
 System.out.println(“Hello” + i); // Statement not reachable
}

4.3) The compiler always check for that all paths that will initialize local variables before they

are used. [8]

4.4) State Diagram for switch statement: [1] [I changed the diagram a little]

 …

 [case label1] [case labeln] [default label]

 …

 if break specified or it was the last label

4.5) In the switch statement: [1] [8]

(a) The case labels are CONSTANT expressions whose values must be UNIQUE.
(b) Constants in case statements can be integer literals, or they can be variables defined

as static and final.
(c) The type of the integral expression must be char, byte, short or int (All primitives

that implicit cast to int).
(d) The type of the case label CANNOT be boolean, long or floating point.
(e) The compiler CHECKS that the constant is in the range of the integer type in the

switch statement, i.e. if you are using a byte variable in the switch statement, the
compiler will object if it finds case statement constants outside –128 to 127 range that
a byte primitive can have.

(f) The associated statement of the case label can be a list of statements which need not
be a statement block.

(g) The labels (including the default label) can be specified in any order in the switch
body.

(h) If it doesn’t have a break statement during execution when we reach the condition all
cases after it is executed.

(i) If the condition matches a case value it will perform all code in the switch following
the matching case statement until a break statement or the end of the switch
statement is encountered.

Evaluate switch expr.

Find matching label

Execute associated
statement1

Execute associated
statementn

Execute associated
statement

(j) If there is no default statement and no exact match, execution resumes after the
switch block of code.

(k) The code block can have another switch statement, i.e. switch statement can be
nested.

(l) The code block associated with a case MUST be complete within the case, i.e. you
can�t have an if-else or loop structure that spreads across multiple case statements.

4.6) Label rules: [8]

Identifiers used for labels on statements do not share the same namespace as the
variables, classes, and methods of the rest of a Java program. The naming rules, as far
as legal characters, are the same as for variables except that labels are always
terminated with a colon (there can be a space between the name and the colon). you can
reuse the same label name multiple points in a method as long as one usage is not
nested inside another. Labels cannot be freestanding, i.e. they must be associated with a
statement.

4.7) break statement immediately terminates the loop code block, and can be used with an

optional identifier which is the label of an enclosing statement � control is then
transferred to the statement following this enclosing labeled statement. [1] [8]
Example:
class LabeledBreakOut {
 public static void main(String args[]) {
 int[][] squareMatrix = {{4, 3, 5},{2, 1, 6},{9, 7, 8}};
 int sum = 0;

 outer: // label
 for (int i = 0; i < squareMatrix.length; i++) { // (1)
 for (int j = 0; j < squareMatrix[i].length; j++) { // (2)
 if (j == i)
 break; // (3) Terminate this loop control to (5)
 System.out.println(�Element[� + i + �, � + j + �]:� +
 squareMatrix[i][j]);
 sum += squareMatrix[i][j];
 if (sum > 10)
 break outer; // (4) Terminate both loops control to (6)
 } // (5) Continue with the outer loop
 } // end outer loop
 // (6) Continue here
 System.out.println(�sum: � + sum);
 }
}

4.8) break statement can be used in: [1]

(a) Labeled blocks.
(b) Loops (for, while, do-while).
(c) switch statement.

4.9) continue statement skips any remaining code in the block and continues with the next

loop iteration, and can be used with an optional identifier which is the label of an arbitrary
enclosing loop � Control is then transferred to the end of that enclosing labeled loop. [1]
[8]
Example:
class LabeledSkip {
 public static void main(String args[]) {
 int[][] squareMatrix = {{4, 3, 5},{2, 1, 6},{9, 7, 8}};
 int sum = 0;

 outer: // label
 for (int i = 0; i < squareMatrix.length; i++) { // (1)
 for (int j = 0; j < squareMatrix[i].length; j++) { // (2)

 if (j == i)
 continue; // (3) Control to (5)
 System.out.println(“Element[” + i + “, ” + j + “]:” +
 squareMatrix[i][j]);
 sum += squareMatrix[i][j];
 if (sum > 10)
 continue outer; // (4) Control to (6)
 } // (5) Continue with the outer loop
 } // end outer loop
 // (6) Continue here
 System.out.println(“sum: ” + sum);
 }
}

4.10) continue statement can be used ONLY in loops: [1]
 for, while, do-while

4.11) while statement: [1]

 [true]

 [false]

4.12) Any variable used in the expression of while loop must be declared before the

expression evaluated. [3]

4.13) do-while statement: [1]

 [true]

 [false]

4.14) for statement: [1]

 [true]
 [false]

Evaluate boolean
expression

Execute while-
body

Execute do-while
body

Evaluate boolean
expression

Execute
initialization

Execute iterated
expression

Evaluate boolean
expression

Execute for-
body

Throwable

Error Exception

InterruptedException

NullPointerExceptionArithmeticException

IOException

java.lang

java.io

RuntimeException

4.15) None of the for-loop sections are required for the code to compile, i.e. everything in a
for loop is optional. [3] [8]

4.16) All the sections of the for loop are independent of each other. The three expressions in

the for statement doesn�t need to operate on the same variables. In fact, the iterator
expression does not even need to iterate a variable; it could be a separate Java
command. [3]
Example:
for (int x1 = 0; x1 < 6; System.out.println(�iterate� + x1))
 x1 += 2;

Output:
iterate2
iterate4
iterate6
NOTE: Most of who study for the certification solved the above example wrong, and say

it just iterate till iterate4 only, in fact this is wrong, look to (4.14) for tracing
help.

4.17) In the for loop, it is legal to mix expression with variable declaration. [3]

Example:
for (int x1 = 0, x2 = 0; x1 < 15; x1++) {}

4.18) It doesn't matter whether you pre-increment or post-increment the variable in the

iterated expression in the for loop. It is always incremented after the loop executes and
before the expression is evaluated. [3]

4.19) return statement: [1]

Form of return statement In void method In non-void method
return; Optional Not allowed
return <expression>; Not allowed Mandatory

4.20) Partial Exception inheritance hierarchy: [1]

 �

4.21) try-catch-finally: [1] [3] [8]

(a) Block notation is MANDATORY.

(b) When an exception or error is thrown, the JVM works back through the chain of
method calls that led to the error, looking for an appropriate handler to catch the
object, if no handler is found, the Thread that created the error or exception dies.

(c) For each try block there can be zero or more catch blocks but only one finally
block.

(d) The catch blocks & finally block must appear in conjunction with a try block, and
in the above order.

(e) A try block must be followed by either at least one catch block or one finally block.
(f) Each catch block defines an exception handler, and the header takes exactly one

argument, which is the exception its block willing to handle.
(g) The exception must be of the Throwable class or one of its subclasses.
(h) When an exception is thrown, java will try to find a catch clause for the exception

type. If it doesn�t found one, it will search for a handler for a super type for the
exception.

(i) The compiler complains if a catch block for a superclass exception shadows the
catch block for a subclass exception, as the catch block of the subclass exception
will never be executed, so the order of the catch clauses must reflect the exception
hierarchy, with the most specific exception first.

(j) The finally block encloses code that is always executed at some time after the try
block, regardless of whether an exception was thrown, it executed after the try
block in case of no catch block or after the catch block if found, EXCEPT in the case
of exiting the program with System.exit(0); .

(k) Even if there is a return statement on the try block, the finally block will be
executed after the return statement.

(l) If a method doesn�t handle an exception the finally block is executed before the
exception is propagated.

4.22) Subclasses of Error are used to signal errors that are usually fatal and are not caught

by catch statements in the program. [8]

4.23) throws clause: [1]

The exception type specified in the throws clause in the method header can be a
superclass type of the actual exceptions thrown.

4.24) A subclass can override a method defined in its superclass by providing a new

implementation, but the method definition in the subclass can only specify all or subset
of the exception classes (including their subclass) specified in the throws clause of the
overridden method in the superclass else it will give compilation error. [1]

4.25) Runtime exceptions are referred to as unchecked exceptions because the compiler does

not require explicit provision in the code for catching them. All other exceptions,
meaning all those that DO NOT derive from java.lang.RuntimeException, are checked
exceptions because the compiler will insist on provisions in the code for cathing them. A
checked exception must be caught somewhere in your code. If you use a method that
throws a checked exception but do not catch this checked exception somewhere, your
code will not compile. [3] [8]

4.26) Each method must however either handle all checked exceptions by supplying a catch

clause or list each unhandled exceptions as a thrown exceptions in the throws clause.
[3]

4.27) To throw your exception you just use the throw keyword with an instance of an

exception object to throw, and you must caught this thrown exception if this exception is
checked but if it is runtime exception or unchecked exception you needn�t to catch. [3]

4.28) If you want to handle an exception in more than one handler you can re-throw the
exception, and the throw statement must be the LAST line of your block because any
line under it is unreachable. [3]

4.29) Runtime exceptions are a special case in Java. Because they have a special purpose of

signaling events that happen at runtime, usually as the result of a programming error,
or bug, they do not have to be caught. If not handled they terminate the application. [3]

4.30) If class extends Exception � class represent checked exception, but if the class extends

RuntimeException it mean it is unchecked. [3]

4.31) getMessage() method in the Throwable class prints the error message string of this

Throwable object if it was created with an error message string; or null if it was
created with no error message. [2]

4.32) toString() method returns a short description of this Throwable object. If this

Throwable object was created with an error message string, then the result is the
concatenation of three strings: [2]

(a) The name of the actual class of this object.
(b) ": " (a colon and a space).
(c) The result of the getMessage() method for this object.

If this Throwable object was created with no error message string, then the name of the
actual class of this object is returned.

4.33) printStackTrace() method in the Throwable class prints this Throwable and its

backtrace to the standard error stream. This method prints a stack trace for this
Throwable object on the error output stream that is the value of the field System.err.
The first line of output contains the result of the toString() method for this object.
Remaining lines represent data previously recorded by the method
fillInStackTrace(). The format of this information depends on the implementation,
but the following example may be regarded as typical: [2]
Example:
java.lang.NullPointerException
 at MyClass.mash(MyClass.java:9)
 at MyClass.crunch(MyClass.java:6)
 at MyClass.main(MyClass.java:3)

4.34) fillInStackTrace() method fills in the execution stack trace. This method records

within this Throwable object information about the current state of the stack frames for
the current thread. This method is useful when an application is re-throwing an error or
exception. [2]
Example:
try {
 a = b / c;
} catch(ArithmeticThrowable e) {
 a = Number.MAX_VALUE;
 throw e.fillInStackTrace();
}

Chapter 5:

Object Oriented programming

5.1) Object is the highest-level java class and all classes are subclass of the Object class. [3]

5.2) One class may only be a subclass of another class or an implementation of interface(s) if

this class of a relation (is a) of the superclass. [3]

5.3) Constructing a relationship of objects: [3]

(a) is a � superclass.
(b) has a � member variables.
Example:
A home is a house and has a family.

5.4) Methods are overloaded when there are multiple methods in the same class with the same

name but with different unique parameter list. [3]

5.5) The number, type, and order of the input parameters plus the method name determines

the signature. [8]

5.6) As return type, visibility, throws exceptions, keywords are NOT part of the signature,

changing it is NOT ENOUGH to overload methods. [1] [3]

5.7) Java always chooses the overloaded method with the closest matching parameter list, the

less to cast. [3]

5.8) Why cannot final, & private be overridden[1] ؟

final : because final prevents method overriding.
private : means that it is not accessible outside the class in which it is defined

therefore a subclass cannot override it.

5.9) A subclass may override non-static methods inherited from the superclass, noting the

following aspects: [1] [3]
(a) A new method definition MUST have the SAME method signature (method name

and parameters types not essential the parameters name) and the SAME return type.
(b) The new method definition, in addition, CANNOT 'NARROW' the accessibility of the

method, but it can 'WIDEN' it, i.e. can�t replace with weaker access privileges.
(c) The new method definition in the subclass can only specify all or a subset of the

exception classes (including their subclasses) specified in the throws clause of the
overridden method in the superclass.

(d) Whether the parameters in the overriding method should be final is at the discretion
of the subclass. A method's signature does not encompass the final modifier of
parameters, only their types and order.

(e) An overridden method and a method in the superclass may declare their methods
synchronized independently of one other.

5.10) When a method is invoked on an object using a reference, it is the class of the current

object denoted by the reference, NOT the type of the reference.
When a variable of an object is accessed using a reference, it is the type of the reference,
NOT the class of the current object denoted by the reference. [1]
References to member methods are resolved at runtime using the type of the object.
References to member variables are computed at compile time using the type of the
reference. [8] [NOTE, I found in one of the exams [ref. 13] that this differs for
static methods, and the superclass method will be always executed]
Example:
// Exceptions
class InvalidHoursException extends Exception {}
class NegativeHoursException extends InvalidHoursException {}
class ZeroHoursException extends InvalidHoursException {}
class Light {
 protected String billType = �Small bill�;
 protected double getBill(int noOfHours)

 throws InvalidHoursException {
 double smallAmount = 10.0,
 smallBill = smallAmount * noOfHours;
 System.out.println(billType + �: � + smallBill);
 return smallBill;
 }
}
class TubeLight extends Light {
 public String billType = �Large bill�;
 public double getBill(final int noOfHours)
 throws ZeroHoursException {
 double largeAmount = 100.0,
 largeBill = largeAmount * noOfHours;
 System.out.println(billType + �: � + largeBill);
 return largeBill;
 }
 public double getBill() {
 System.out.println(�No bill�);
 Return 0.0;
 }
}
public class Client {
 public static void main(String args[])
 throws InvalidHoursException {
 TubeLight tubeLightRef = new TubeLight();
 Light lightRef1 = tubeLightRef;
 Light lightRef2 = new Light();

 // Invoke overridden methods
 tubeLightRef.getBill(5);
 lightRef1.getBill(5);
 lightRef2.getBill(5);

 // Access shadowed variables
 System.out.println(tubeLightRef.billType);
 System.out.println(lightRef1.billType);
 System.out.println(lightRef2.billType);

 // Invoke overloaded method
 tubeLightRef.getBill();
 }
}

Output from the program:
Large bill: 500.0
Large bill: 500.0
Small bill: 50.0
Large bill
Small bill
Small bill
No bill

5.11) If no constructors are declared in a class, the compiler will create a default constructor

that takes no parameters. [8]

5.12) No return type specified from the constructor. [3]

5.13) The constructor method CANNOT be final, abstract, synchronized, native, and

static, and CAN be declared public, protected, private. [3] [8]

5.14) Constructors CANNOT be overridden; they can only be overloaded, but only in the same

class, and they CAN have a list of thrown exceptions. [1] [8]

5.15) You CANNOT call constructor recursively. [3]

5.16) Java specifies that when using this() call & super()

(a) It MUST occur as the first statement in a constructor, followed by any other relevant
statements.

(b) It CAN ONLY be used in a constructor � this() and super() calls CANNOT both
occur in the same constructor. [1]

5.17) If a constructor at the end of such a this() - chain (which may not be a chain at all if

no this() call is invoked) does not have explicit call to super(), then the call super()
(without the parameters) is implicitly inserted to invoke the default constructor of the
superclass � subclass without any default constructor will fail to compile if the
superclass does not have default constructor (i.e. provides only non-default
constructors). [1]

5.18) Interface is non-functional reference type class that contains constants and methods

declarations but not functional methods. [3] [8]

5.19) We define a method within the interface but instead ending with {} end with �;�. [3]

5.20) Interface can�t implements another interface but it can extend another interface(s). [3]

5.21) The methods in an interface are all abstract by virtue of their declaration, and should

not be declared abstract, an interface is abstract by definition & therefore CANNOT
be instantiated. [1]

5.22) All interface methods will have public accessibility when implemented in the class (or its

subclasses). [1]

5.23) A class can choose to implement only some of the methods of its interfaces, i.e. give a

partial implementation of its interfaces � the class must then be declared as abstract.
[8]

5.24) Interfaces methods CANNOT be declared static, because they comprise the contract

fulfilled by the objects of the class implementing the interface and are therefore instance
methods. [1]

5.25) There are three different inheritance relations at work when definning inheritance

between classes and interfaces: [1]
(a) Linear implementation inheritance hierarchy between classes: a class extends another

class.
(b) Multiple inheritance hierarchy between interfaces: an interface extends other

interfaces.
(c) Multiple interface inheritance hierarchy between interfaces and classes: a class

implements interfaces.

5.26) An interface can define constants, such constants are considered to be public, static

and final regardless of whether these modifiers are specified, so interface may not
however declare variables unless they are initialized (i.e. the assigning must be at the
declaration statement). [1] [3]

5.27) The rule of thumb for reference values is that conversions up the hierarchy are permitted

(called upcasting), but conversions down the hierarchy require explicit casting (called
downcasting). In other words, conversions which preserve the inheritance is a
relationship are allowed, other conversions require explicit cast or are illegal. [1]

5.28) Casting to a different type will compile fine but will throw ClassCastException.

5.29) What is reference type & object? [3]

Example:
Component c = new Button();
(a) c reference type is Component but as an object is Button.
(b) At compile time Java treat c as a Component for conversion and casting, at runtime

the Java treat c as Button.

5.30) The rules for reference assignment are stated on the following code: [1]

SourceType srcref;
DestinationType destRef = srcRef؛

(a) If the SourceType is a class type, the reference value srcRef may be assigned to the

destRef reference, provided is one of the following:
- DestinationType is a superclass of the subclass SourceType.
- DestinationType is an interface type which is implemented by the class

SourceType.
(b) If SourceType is an interface type, the reference value is srcRef may be assigned to

destRef reference, provided DestinationType is one of the following:
- DestinationType is Object.
- DestinationType is a super interface of sub-interface SourceType.

(c) If the SourceType is an array type, the reference value in srcRef may be assigned to
destRef reference, provided DestiationType is one of the following:

- DestinationType is Object.
- DestinationType is an array type, where the element type of the SourceType

can be converted to the element type of DestinationType.
Note:
The above rules also apply for parameter passing conversions; this is reasonable, as
parameters in java are passed by value, requiring that values of actual parameters must
be assignable to formal parameters of compatible types.

5.31) The types of references variables can hold depened on the object hierarchy. [8]

Example:
Object anyRef;
String myString;
Because every class in Java descends from Object, anyRef could refer to any object.
However, because String cannot be subclassed, myString can refer to a String object
only.

Chapter 6:

Garbage Collection & Object Lifetime

6.1) JVMs typically run the garbage collection as a low priority Thread, which is activated when
the JVM feels that it is running short of available memory. [8]

6.2) Local variable are set to null after use � this makes the objects denoted by the local

variable eligible for garbage collection from this points onwards, rather than after the
method terminates, this optimization technique should ONLY be used as a last resort
when resources are scarce. [1]

6.3) The object is eligible for collecting after last reference that refers to it is dropped. [7]

6.4) The finalizer of the object is simply a method of an object that is called just before the

object is deleted (i.e. the finalizer is the destructor of the object). [7]

6.5) All the processing in the virtual machine stops while the garbage collectors run

(disadvantage). [7]

6.6) If the garbage collector didn�t free enough memory then the request fails

(java.Lang.OutOfMemoryError). [7]

6.7) The automatic garbage collection calls the finalize() method in an object which is

eligible for garbage collection (i.e. an object is being out of scope or unreachable) before
actually destroying the object, finalize method is an instance method which is defined in
the class Object as protected void finalize() throws Throwable. [1] [3]
-A finalizer can be overridden in a subclass to take appropriate action before the object is

destroyed.
-A finalizer can catch & throw exception, HOWEVER, any exception thrown but not caught

by a finalizer when invoked by the garbage collection is ignored.
-In case of finalization failure, the object still remains eligible to be disposed of at the

discretion of the garbage collection(unless it has been resurrected).
-The finalizer is only called ONCE on an object, regardless of being interrupted by any

exception during its exception.

6.8) Finalizers are NOT implicitly chained like constructors for subclasses � a finalizer in a

subclass should explicitly call the finalizer in its superclass as its LAST action (in a
finally block). [1]

6.9) The finalize method is called directly from the system and never called by the

programmer directly. If called by the programmer it acts as an ordinary method and it
don�t count by the JVM � so the JVM can call it when applying garbage collection. [7]

6.10) Static members are considered always to be lived objects. [7]

6.11) A finalize method can make object accessible again, 'resurrect' it, thus avoiding it

being garbage collected, one simple technique is to assign its this reference to a static
variable, from which it can be retrieved later. [1]

6.12) A finalizer is called ONLY ONCE on an object before being garbage collected � an object

can only resurrected ONCE. [1]

6.13) Method System.gc()or Runtime.getRuntime().gc()in the java.lang package can be

used to SUGGEST to the JVM that now is a good time to run the garbage collection but
you CANNOT guarantee that all objects eligible for garbage collection will be collected).
Method System.runFinalization() can be used to SUGGEST that the JVM expend
effort toward running the finalizers (which have not been executed before) for objects
eligible for garbage collection. [1] [8]

6.14) There are NO guarantees that the objects no longer in use will be garbage collected and

their finalizers executed at all. Garbage collection MIGHT NOT even be run if the

program execution might remain allocated after program termination, unless reclaimed
by the operating system or by other means. [1]

6.15) There are also NO guarantees on the order in which the objects will be garbage

collected, or on the order in which the finalizers will be executed. Therefore, the program
should not make any decisions based on these assumptions. [1] [8]

6.16) You should directly invoke the garbage collection system before entering a time critical

section of code. [7]

6.17) Instance initializer expressions are executed in the order in which the instance member

variable are defined in the class, the same is true for static initializer expressions � if a
constant expression is used in the initialization of a member variable then all its operands
must be defined before they can be used in the expression. [1]

6.18) A LOGICAL error can occur if the order of the initializer expressions is not correct. [1]

Example:
Class Hotel {
 private int NO_OF_ROOMS = 12;
 private int MAX_NO_OF_GUEST = initMaxGuests();
 private int OCCUPANCY_PER_ROOM = initOccupancy();

 private int initMaxGuests() {
 System.out.println(�Occupancy_PER_ROOM: � + OCCUPANCY_PER_ROOM);
 System.out.println(�MAX_NO_OF_GUEST: � + NO_OF_ROOMS *
 OCCUPANCY_PER_ROOM);
 return NO_OF_ROOMS * OCCUPANCY_PER_ROOM;
 }

 public int getMaxGuests() {
 return MAX_NO_OF_GUEST;
 }

 public int initOccupancy() {
 return 2;
 }

 public int getOccupancy() {
 return OCCUPANCY_PER_ROOM;
 }
}
public class TestOrder {
 public static void main(String args[]) {
 Hotel objRef = new Hotel();
 System.out.println(�After object creation: �);
 System.out.println(�OCCUPANCY_PER_ROOM: � + objRef.getOccupancy());
 System.out.println(�MAX_NO_OF_GUEST: � + objRef.getMaxGuests());
 }
}
Output:
OCCUPANCY_PER_ROOM: 0
MAX_NO_OF_GUEST: 0
After object creation:
OCCUPANCY_PER_ROOM: 2
MAX_NO_OF_GUEST: 0

6.19) Initializer expressions CANNOT pass on the checked exceptions, only unchecked ones. If

any checked exception is thrown during execution of an initializer expression, it must be
caught and handled within the initializer expression. [1]

6.20) Static initializer blocks: [1]

- Can include arbitrary code.
- Code is executed ONLY ONCE when the class is initialized.
- Is NOT contained in any method.
- A class can have more than one static initializer block.
- A typical use of static initializer in a class is to load any external libraries that class

needs, for example, to execute native methods.
- Must catch and handle the checked exception in the block as no constructor is involved

in class initialization.
Example:
class StaticInitializers {
 final static int ROWS = 12, COLUMNS = 10;
 static long[][] matrix = new long[ROWS][COLUMNS];
 // �
 static {
 for (int i = 0; i < matrix.length; i++)
 for (int j = 0; j < matrix[i].length; j++)
 matrix[i][j] = 2*i + j;
 }
 // �
}

6.21) Instance initializer blocks: [1]

- Code is executed every time an instance of the class is created.
- Is NOT contained in any method.
- A typical use of an instance initializer block is an anonymous classes, which cannot

have constructors.
- A class can have more than one instance initializer block.
- Exception handling differs from that in static initializer blocks in the following respect:

if an instance initializer block does not catch a checked exception that can occur during
its execution, then the exception must be declared in the throws clause of every
constructor in the class.

Example:
class InstanceInitializers {
 long[] squares = new long[10];
 // �
 {
 for(int i = 0; i < squares.length; i++)
 squares[i] = i*i;
 }
 // �
}

6.22) The action of creating a new object is the biggest use of memory in a Java application.

[7]

6.23) Constructing initial object state:(when invoking new operator): [1]

- Instance variables are initialized to their default values.
- Constructor is invoked which can lead to local chaining of constructors, the invocation

of the constructor at the end of the local chain of constructor invocations results in the
following actions, BEFORE the constructor�s execution resumes:

(a) Invocation of superclass's constructor implicitly or explicitly. Constructor chaining
ensures that the inherited state of the object is constructed first.

(b) Initialization of instance member variables by executing their instance initializer
expressions and any instance initializer blocks in the order they are specified in the
class definition.
Example:
class SuperclassA {

 Public SuperclassA() {
 System.out.println(�Constructor in SuperclassA�);

 }
}
class SubclassB extends SuperclassA {

 public SubclassB() {
 this(3);
 System.out.println(�Default constructor in SubclassB�);
 }

 public SubclassB(int i) {
 System.out.println(�Non-default constructor in SubclassB�);
 value = i;
 }
 {
 System.out.println(�Instance initializer block in SubclassB�);
 // value = 2; // Not Ok
 }

 private int value = initializerExpression();

 private int initializerExpression() {
 System.out.println(
 �Instance initializer expression in SubclassB�);
 return 1;
 }
}
public class ObjectConstruction {
 public static void main(String args[]) {
 new SubclassB();
 }
}
Output:
Constructor in SuperclassA
Instance initializer block in SubclassB
Instance initializer expression in SubclassB
Non-default constructor in SubclassB
Default constructor in SubclassB

Chapter 7:

Inner classes

7.1) Inner classes are classes defined at a scope smaller than a package, i.e. you can define
an inner class inside another class, inside a method and even as part of an exception. [3]

7.2) Why make a nested class? [8]

(a) You might need to make use of the special functionality of class A from within class B
without complicating the inheritance hierarchy of either class.

(b) From the point of view of programming philosophy, if class A exists solely to help work
with class B, you might as well make class A a member of class B. This helps to keep
all of the code related to class B in a single source code file.

7.3) Just as member methods in a class have unlimited access to all private and other

variables and methods in the class, nested classes also have unlimited access. [8]

7.4) Notes on nested top level classes: [1] [3]

- Is considered NOT included in inner classes as mentioned in [1], but considered included
in inner classes as mentioned in [8] & also while solving question, STILL confusing till
NOW. When I took my exam, I had several question in it that makes it included in the
inner classes.

- They behave much like top-level classes except that they are defined within the scope of
another class.

- Interfaces are implicitly static, nested interfaces can optionally be prefixed with the
keyword static and have public accessibility.

- CANNOT have the same name as an enclosing class or package.
- static methods do NOT have a this reference & can therefore access other static
methods & variables directly in the class, this also applies to methods in a nested top-
level class.

- Top-level nested class can define both static & non-static & instance members, however
the code can ONLY directly access static members in the enclosing context regardless
of their accessibility.

- CAN implement any arbitrary interface.
Example:
// Filename: TopLevelClass.java
public class TopLevelClass { // (1)
 // �
 static class NestedTopLevelClass { // (2)
 // �
 interface NestedTopLevelInterface1 { // (3)
 // �
 }
 static class NestedTopLevelClass1 // (4)
 implements NestedTopLevelInterface1 {
 // �
 }
 }
}
The full name of nested top-level class at (4) is:
TopLevelClass.NestedTopLevelClass.NestedTopLevelClass1
When compiled:
TopLevelClass$NestedTopLevelClass$NestedTopLevelClass1.class
TopLevelClass$NestedTopLevelClass$NestedTopLevelInterface1.class
TopLevelClass$NestedTopLevelClass.class
TopLevelClass.class
- import statement can be used by clients to provide shortcut for the names of nested
top-level classes and interfaces.
Example:
// Filename: Client1.java
import TopLevelClass.*;
public class Client1 {

 NestedTopLevelClass.NestedTopLevelClass1 objRef1 = new
NestedTopLevelClass.NestedTopLevelClass1();

}

// Filename: Client2.java
import TopLevelClass. NestedTopLevelClass.*;
public class Client2 {
 NestedTopLevelClass1 = objRef1 = new NestedTopLevelClass1();
}

7.5) Notes on Non-static Inner classes: [1] [3]

- Are defined without the keyword static, as members of an enclosing class, and can also
be nested to any depth.

- An instance of a non-static inner class can ONLY exist with an instance of its enclosing
class. This means that an instance of a non-static inner class must be created in the
context of an instance of the enclosing class.

- CANNOT have static members, i.e. the class does not provide any services, only
instances of the class do.

- CANNOT have the same name as an enclosing class.
- Methods of a non-static inner class can directly refer to any member (including classes)
of any enclosing class, including private members. No explicit reference is required.

- It can have any accessibility including abstract.
- To create an instance of the non-static inner class:

(a) If you inside the scope of the enclosing class use:
new Memberclass()
or
this.new Memberclass()

(b) If you are outside the scope of the enclosing class you need to use an instance of
the enclosing class to create the member object, you can use a specific form of the
new operator as follows:
<enclosing object reference>.new <Non static inner class name>

- Referring to members in the enclosing class is possible, but if you want to use this
reference to refer to it, you can use it in the form:
<enclosing class name>.this.<enclosing class member name>

- Example (About referencing shadowed members):
class TLClassA { // (1) Top-level class
 private String msg = �TLClassA object �;
 private TLClassA(String objNo) {
 msg = msg + objNo;
 }
 public void printMessage() {
 System.out.println(msg);
 }
 class InnerB { // (2) Non-static Inner class
 private String msg = �InnerB object �;
 public InnerB(String objNo) {
 msg = msg + objNo;
 }
 public void printMessage() {
 System.out.println(msg);
 }
 class InnerC { // (3) Non-static Inner class
 private String msg = �InnerC object �;
 public InnerC(String objNo) {
 msg = msg + objNo;
 }
 public void printMessage() {
 System.out.println(msg);
 System.out.println(this.msg);
 System.out.println(InnerC.this.msg);
 System.out.println(InnerB.this.msg);
 InnerB.this.printMessage();
 System.out.println(TLClassA.this.msg);

 TLClassA.this.printMessage();
 }
 }
 }
}
public class Client2 {
 public static void main(String args[]) {
 TLClassA a = new TLClassA(�1�);
 TLClassA.InnerB b = a.new InnerB (�1�);
 TLClassA.InnerB.InnerC c = b.new InnerC (�1�);
 c.printMessage();
 TLClassA.InnerB bb = new TLClassA(�2�).new InnerB (�2�);
 TLClassA.InnerB.InnerC cc = bb.new InnerC (�2�);
 cc.printMessage();
 TLClassA.InnerB.InnerC ccc = new TLClassA(�3�).new InnerB (�3�).new
InnerC(�3�);
 }
}
Output of the program:
InnerC object 1
InnerC object 1
InnerC object 1
InnerB object 1
InnerB object 1
TLClassA object 1
TLClassA object 1
InnerC object 2
InnerC object 2
InnerC object 2
InnerB object 2
InnerB object 2
TLClassA object 2
TLClassA object 2
When compiled:
TLClassA$InnerB$InnerC.class
TLClassA$InnerB.class
TLClassA.class
Client2.class
- CAN extend other classes and can themselves be extended. BUT if a name conflict

arises, the inherited member shadows the member with the same name in the
enclosing class. The compiler, however, REQUIRES that explicit references be used.
Example:
class B {
 protected double x = 2.17;
}
class A {
 private double x = 3.14;

 class C extends B {
 // private double w = x; // Compile time error
 private double y = this.x; // x from the superclass
 private double u = super.x; // x from the superclass
 private double z = A.this.x; // x from the enclosing class
 }
}

7.6) Notes on Local classes: [1]

- Is a class that is defined in a block. This could be a method body, a constructor, a local
block, a static initializer or an instance initializer.

- Is ONLY visible within the context of the block, i.e. the name of the class is only valid in
the context of the block in which it is defined. Clients outside the context of a local class
CANNOT create or access these classes directly, because they are all local.

- CANNOT be specified with the keyword static. However, if the context is static (i.e. a
static method or a static initializer) then the local class is implicitly static. Otherwise, the
local class is non-static.

- CANNOT have static members as they can�t provide class specific services.
- CANNOT have any accessibility. This restriction applies to local variables, and is also
enforced for local classes.

- Can access members defined within the class.
- Can access final local variables, final method parameters and final catch-block
parameters in the scope of the local context.

- Can access members inherited from its superclass in the usual way, also the standard
this reference or the super keyword can be used.

- A non-static local class can access members defined in the enclosing class explicitly, or
the special form of the this can be used.

- A non-static local class can directly access members inherited by the enclosing class, or
the special form of the this can be used.

Example:
class SuperB {
 protected double x;
 protected static int n;
}
class SuperC {
 protected double y;
 protected static int m;
}
class TopLevelA extends SuperC { // Top level class
 private double z;
 private static int p;

 void nonStaticMethod(final int i) { // Non-static method
 final int j = 10;
 int k;
 class NonStaticLocalD extends SuperB { // Non-static local class
 // static double d; // Not ok, Only non-static members allowed
 int ii = i; // final from enclosing method
 int jj = j; // final from enclosing method
 // double kk = k; // Not ok, Only finals from enclosing method
 double zz = z; // non-static from enclosing class
 int pp = p; // static from enclosing class
 double yy = y; // inherited by the enclosing class
 int mm = m; // static from enclosing class
 double xx = x; // non-static inherited from superclass
 int nn = n; // static from superclass
 }
 }

 static void staticMethod(final int i) {
 final int j = 10;
 int k;
 class StaticLocalE extends SuperB {
 // static double d; // Not ok, Only non-static members allowed
 int ii = i; // final from enclosing method
 int jj = j; // final from enclosing method
 // double kk = k; // Not ok, Only finals from enclosing method
 // double zz = z; // Not ok, Non-static member
 int pp = p; // static from enclosing class
 // double yy = y; // Not ok, Non-static member
 int mm = m; // static from enclosing class
 double xx = x; // non-static inherited from superclass

 int nn = n; // static from superclass
 }
 }
}
When compiled: [as in reference [1]]
TopLevelA1NonStaticLocalD.class
TopLevelA1StaticLocalE.class
TopLevelA.class
SuperB.class
SuperC.class
When compiled: [as I tried with Oracle jdeveloper 3.1, I don�t know which is right]
TopLevelA1NonStaticLocalD.class
TopLevelA2StaticLocalE.class
TopLevelA.class
SuperB.class
SuperC.class

- A method can return an instance of the local class. The local class must be assignable to
the return type of the method, often supertype of the local class is specified as the return
type.

7.7) Notes on Anonymous classes: [1]

- It combines the process of definition and instantiation into a single step, as they are
defined at the location they are instantiated, using additional syntax with the new
operator.

- The context determines whether the anonymous class is static, and the keyword static
is NOT used explicitly.

- It CANNOT define constructors (as it does not have name).
- It implicitly extends the Object class.
- Syntax for defining and instantiation of anonymous classes:

new <superclass> (<optional argument list>) {<class declaration>}
- It provides a SINGLE interface implementation, and NO arguments are passed.
- Syntax for defining and instantiating anonymous class that implements an interface:

new <interface name> () {<class declaration>}
Example:
interface IDrawable {
 void draw();
}
class Shape implements IDrawable {
 public void draw() {
 System.out.println(�Drawing a Shape.�);
 }
}
class Painter { // Top level class
 public Shape createShape() { // Non-static method
 return new Shape() { // Extends superclass Shape
 public void draw() {
 System.out.println(�Drawing a new Shape.�);
 }
 };
 }
 public static IDrawable createIDrawable() { // static method
 return new IDrawable() { // implements interface
 public void draw() {
 System.out.println(�Drawing a new IDrawable.�);
 }
 }
 }
}
public class Client {
 public static void main(String args[]) {

 IDrawable[] drawables = {
 new Painter().createShape(),
 Painter.createIDrawable(),
 newPainter().createIDrawable()
 };
 for (int I = 0; I < drawables.length; I++)
 drawables[I].draw();
 System.out.println(�Anonymous Class Names:�);
 System.out.println(drawables[0].getClass());
 System.out.println(drawables[1].getClass());
 }
}
When compiled:
class Painter$1
class Painter$2

7.8) All inner classes can define ONLY non-static members, and can have static final

members.

7.9) Summary of classes and interfaces: [1]

Entity Declaration
Context

Accessibility
modifiers

Require
outer
instance

Direct
Access to
Enclosing
Context

Defines
static or
Non-static
members

Package
level class

As package
member

public or
default

No N/A Both static
and non-
static

Top-level
nested class
(static)

As static
class
member

All No Static
members in
enclosing
context

Both static
and non-
static

Non-static
inner class

As non-
static class
member

All Yes All members
in enclosing
context

Only non-
static +
static final
ONLY

Local class
(non-static)

In block
with non-
static
context

None Yes All members
in enclosing
context +
local final
variables

Only non-
static +
static final
ONLY

Local class
(static)

In block
with static
context

None No Static
members in
enclosing
context +
local final
variables

Only non-
static +
static final
ONLY

Anonymous
class (non-
static)

As
expression
in non-static
context

None Yes All members
in enclosing
context +
local final
variables

Only non-
static +
static final
ONLY

Anonymous
class
(static)

As
expression
in static
context

None No Static
members in
enclosing
context +
local final
variables

Only non-
static +
static final
ONLY

Interface As package
member or

Public only N/A N/A Static
variables +

static class
member

non-static
method
prototypes

Chapter 8:

Threads

8.1) At most ONE object is executing per CPU, while others might be waiting for resources or
waiting for chances to execute or sleeping or dead. [3]

8.2) The main() method can be finished, but the program will keep running until all the user

threads are done, i.e. Program terminates when the last non-deamon thread ends. [1]

8.3) Daemon threads run in the background and do not prevent a program from terminating.

For example, the garbage collector is a daemon thread, a daemon thread is at the mercy
of the runtime system, it is stopped if there are no more user threads running. [1]

8.4) The Thread class provide: [2]

public final void setDaemon(boolean on)
Marks this thread as either a daemon thread or a user thread.

public final boolean isDaemon()
Tests if this thread is a daemon thread.

8.5) If the code spawning threads is not put within try - catch block in the main() method,

the main thread would finish executing before the child thread; however, the program
would run until the child thread completes. [1]

8.6) Implementing threads is achieved in one of two ways: [1] [8]

Implementing
java.lang.Runnable

Extending
java.lang.Thread

1. A class implements the Runnable interface
providing the run() method, which will be
executed by the thread.

1. A class extending the Thread class
overrides the run() method from the
Thread class to define the code executed
by the thread.

2. An object of the Thread class is created.
An object of a class implementing the
Runnable interface is passed as an
argument to a constructor of the Thread
class.
Thread(Runnable threadTarget)
Thread(Runnable threadTarget,

String threadName)

2. This subclass may call a Thread
constructor explicitly in its constructors to
initialize the thread.

3. The start() method is invoked on the
Thread object created in 2. However, the
start() method returns immediately
after a thread has been spawned. This
method is defined in the Thread class.

3. The start() method inherited from the
Thread class is invoked on the object of
the class to make the thread eligible for
running.

4. It is possible to attach more than one
Thread to a Runnable object.

8.7) run methods CANNOT throw exceptions so all checked exception MUST be caught using

try - catch. [3]

8.8) When a thread is started, it gets connected to the JVM scheduling mechanism and

executes a method declared as follows: [8]
public void run()

NOTE:
The run method in the Thread class is empty.

8.9) Calling your thread�s start() method doesn�t immediately cause the thread to run, it just

make it eligible to run, and the instructions after the start() call is executed before or
after the thread is NOT determined. The JVM sets up some resources and puts the Thread
in the list of runnable Threads. Exactly when a thread gets to execute depends on its

priority, the activity of the other threads, and the characteristics of the particular JVM. [3]
[8]

8.10) When creating threads, implementing the Runnable interface is usually preferred to

extending the Thread class for two main reasons: [1]
(a) Extending the Thread class means that the subclass cannot extend any other class,

whereas by implementing the Runnable interface it has this option.
(b) A class might only be interested in being Runnable, and therefore inheriting the full

overhead of the Thread class would be excessive.

8.11) You can simulaneously create and start a thread as in the following method:

public void startThread() {
 new Thread(this).start();
}

NOTE: You might think that the new thread in the preceding example would be
garbage-collected because no reference to it is being kept, but the JVM created a
reference in its list of threads. [8]

8.12) A thread might be halted in mid-calculation and another allowed to use the same data,

resulting in a disaster � that�s why we need synchronization. [8]

8.13) Java provides the foundation for solving synchroniztion in the Object class. Each object

has an associated lock variable that can be manipulated only by the JVM. This lock
provides a monitor mechanism that can be used to allow only one thread at a time to
have access to an object (mutually exclusive lock). [1] [8]

8.14) Because it would take additional time for the JVM to check the lock condition of an object

every time it is accessed, the lock is ignored by default. The keyword synchronized is
used to indicate a method or block of code that needs to be guarded by the lock
mechanism. [8]

8.15) When synchronized is used as a statement, it requires a reference to the object to be

locked. For convenience, synchronized can be used as a method modifier, in which case
the entire method is the block of code, and this is automatically the object reference.
[8]

8.16) The monitor mechanism enforces the following rules of synchronization: [1]

- NO other thread can enter a monitor if a thread has already acquire the monitor.
Threads wishing to acquire the monitor will wait for the monitor to become available.

- When a thread exits a monitor, a waiting thread is given the monitor, and can proceed
the shared resource associated with the monitor.

8.17) There are two ways in which code can be synchronized: [1] [8]

Synchronized methods Synchronized blocks
1. Are useful in situations where methods

can manipulate the state of an object in
ways that can corrupt the state if executed
concurrently.

1. Allows arbitrary code to be synchronized
on the monitor of an arbitrary object; the
code block is usually related to the object
on which the synchronization is being
done.
syncronized (<objectreference>) {�}

2. While a thread is inside a synchronized
method of an object, all other threads
that wish to execute this synchronized
method or any other synchronized
method of the object will have to wait.

2. The braces of the block CANNOT be left
out even if the code block has just one
statement.

3. The non-synchronized methods of the
object can of course be called at any time
by any thread.

3. Once a thread has entered the code block
after acquiring the monitor of the specified
object, no other thread will be able to

Non-runnable state

 new

execute the code block or another code
requiring monitor until the monitor is
released by the object.

4. Synchronized methods can be static. 4. Inner classes can access data in their
enclosing context; An inner object might
need to synchronize on its associated
outer object, in order to ensure integrity of
data in the latter.

5. Classes also have a class-specific monitor,
which is analogous (similar) to the object
monitor.

5. DO NOT synchronize on a local variable,
because it will accomplish nothing because
every thread has its own copy of local
variables, so you should use an instance
object reference variable instead.

6. Synchronization of static methods in a
class is independent from the
synchronization of instance methods on
objects of the class (i.e. A thread acquiring
the monitor on any object of the class to
execute a static synchronized method
has no bearing on any thread acquiring the
monitor on any object of the class to
execute a synchronized instance method.

6. Be sure that the object chosen really
protects the data you want to protect.

7. A subclass decides whether the new
definition of an inherited synchronized
method will remain synchronized in the
subclass.

8. Consumes extra CPU cycles on entry and
exit, so you should not synchronize
without good cause.

8.18) Thread objects have a distinct life cycle with four basic states: [8]

(a) new.
(b) Runnable.
(c) Blocked (Non-runnable).
(d) Dead.
The transitions from new to runnable and from runnable to dead are simple and
permanant, the transitions between runnable and blocked occupy most of the Java
programmer�s attention.

8.19) Thread states: [1] [2] [8] [I modified the graph a little]

 leaving non-runnable

 start()

 scheduling yield()

 wait() sleep()

 Runnable state

 terminates notify()
 notifyAll() Time elapsed

Ready � to - Run

Running

Dead

Waiting Sleeping Blocked

Ready-to-run: Means thread is eligible for running. A call to static method yield() will
cause current running thread to move to ready-to-run. Here the thread
awaits its turn to get the CPU time, if the thread is carrying out a
complex computation, you should insert an occasional call to yield() in
the code to ensure that other threads get a chance to run.

Running: The CPU is currently executing the thread, the �thread schedular� decides
which thread is in the running state.

Non Runnable states: A thread can go from the running state into one of the non-
runnable states, depending on the transition, & remains their till
a special transition moves it to ready-to-run state.

(a) waiting: A thread can call wait() method, it must be notified by another
thread, in order to move to 'ready-to-run' state.
In the java.lang.Object class:
public final void wait()throws InterruptedException
- The calling thread gives up the CPU.
- The calling thread gives up the lock.
- The calling thread goes into the waiting state.
- The thread that calls the wait must be the owner of the object's

monitor.
- The following two methods in the Object class causes current thread

to wait until either another thread invokes the notify() method or
the notifyAll() method for this object, or a specified amount of
time has elapsed.

void wait(long timeout) throws InterruptedException
void wait(long timeout,int nanos)throws InterruptedException

(b) sleeping: Can call sleep(), wakesup after specified amount of time elapsed.
public static void sleep(long millis) throws
InterruptedException
public static void sleep(long millis, int nanos) throws
InterruptedException
NOTE:
Sleeping is not a high-precision timing operation because it depends
on the clock of the underlying operating system. In addition, there is
no guarantee that the thread will immediately begin to execute after
the time delay is up; that is up to the JVM thread scheduler.

(c) blocked state: A running thread on executing a blocking operation requiring
resource(like I/O method), and also a thread is blocked if it fails
to acquire the monitor on an object; the blocking opertaion must
complete before the thread can proceed to ready-to-run state.

Dead: when the thread is completed as it exits the run method to which it is attached,
you CANNOT restart a dead thread.

8.20) JVM also dies when the System.exit or exit method of Runtime is called.

8.21) Priorities: Are Integer values from 1 (Thread.MIN_PRIORITY) to 10

(Thread.MAX_PRIORITY), if no explicit thread priority is specified for a thread,
it is given default priority(Thread.NORM_PRIORITY). [1]

8.22) A thread inherits priority of parent thread not Thread.NORM_PRIORITY & can be explicitly

set or read using methods in the Thread class:
public final void setPriority(int newPriority)
public final int getPriority()

8.23) Thread schedules are implementation and platform dependent. [1]

8.24) If a thread that does not have a lock on an object attempts to call the object�s wait or

notify method, an IllegalMonitorStateException is thrown � typically with the

message �current thread not owner�. To ensure that is never happens, the wait(),
notify(), and notifyAll() must be executed in synchronized code. [1] [8]

8.25) When notify is called, a thread is removed from the wait set and returned to the list of

runnable threads. If more than one thread is waiting, you CANNOT control or predict
which one it will be, a call to notify() has no consequence if there are not any threads
waiting. If there is a chance that more than one thread is waiting, you can use
notifyAll(), it removes all waiting threads from the wait list, ONLY one of these will
actually get a lock on the object and be allowed to execute the synchronized method,
the others will run and find that the object is still locked. [3] [8]

8.26) It is a good thing to put the wait() in a loop that test the waiting condition to guarantee

that the connection for waiting is fulfilled when this thread is notified. [1]

8.27) A thread becomes the owner of the object's monitor in one of three ways: [3]

(a) By executing a synchronized instance method of that object (i.e. by executing a
synchronized method inside this method you can call the wait method)

(b) By executing the body of a synchronized block that synchronizes on the object.
(c) For objects of type Class, by executing a synchronized static method of that

class.

8.28) Automatic variables CANNOT be shared between threads each thread has it�s copy and

can�t modify the value of the other thread. [3]

8.29) public final boolean isAlive() [11]

Tests if this thread is alive. A thread is alive if it has been started and has not yet died.
Example:
Parent thread finds if any child threads are alive before terminating itself
isAlive() will return true at all states (including suspended) except when the thread is
in new or dead state.

8.30) public final void join() throws InterruptedException
Waits for this thread to die. A call to this method invoked in a thread will wait and not
return until thread has completed. A parent thread can use this method to wait for its
child thread to compkete before continuing.[1] [2]

8.31) The programmer is ultimately responsible for avoiding deadlocks. [8]

8.32) To avoid common mistakes in the exam, here is a summary of methods used with

threads: [8]
Class Method Type Needs Timeout Form
Thread yield() static no
Thread sleep(#) static try-catch always
Thread start() instance no
Thread run() instance no
Thread interrupt() instance no
Object wait() instance synchronized, try-catch optional
Object notify() instance synchronized no
Object notifyAll() instance synchronized no

Chapter 9:

Fundamental classes

9.1) Object class: [1] [2]
Is the mother class of all classes; A class definition, without the extends clause, implicitly
extends the Object class.

Method Notes
public int hashCode() Returns a hash code value for the object.

If two objects are equal according to the
equals method, then calling the hashCode
method on each of the two objects must
produce the same integer result.

public final Class getClass() Returns the runtime class of an object.
public boolean equals(Object obj) This method returns true if and only if x and

y refer to the same object (x==y has the
value true).
Usually overridden to provide semantics of
the object value equality. Expression
obj.equals(null) is always false.

protected Object clone() throws
CloneNotSupportedException.

Creates and returns a copy of this object.

public String toString() Returns a string representation of the
object.
if the subclass does not override this
method, it returns a textual representation
of the object, which has the following fomat:
< getClass().getName()> @
<Integer.toHexString(hashCode())>
The println() method in the PrintStream
will convert its argument to a textual
representation using this method.

protected void finalize() throws
Throwable

Called just before an object is garbage
collected, so that cleanup can be done. The
default finalize() method in the Object
class does nothing.

public final void wait() throws
InterruptedException
public final void wait(long timeout)
throws InterruptedException
public final void wait(long timeout,
int nanos) throws
InterruptedException

Throws IllegalMonitorStateException if
the current thread is not the owner of this
object's monitor.
Throws InterruptedException if this thread
is interrupted by another thread.

public final void notify() Wakes up a single thread that is waiting on
this object's monitor. If any threads are
waiting on this object, one of them is chosen
to be awakened. The choice is arbitrary and
occurs at the discretion of the
implementation.

public final void notifyAll() Wakes up all threads that are waiting on this
object's monitor.

9.2) The wrapper classes: [1]

- The objects of all wrapper classes that can be instantiated are immutable.
- The Void class is not instantiable.
- Common wrapper class constructors:

Each wrapper class (except Character class has only one constructor) has the following
two constructors:

i. A constructor that takes a primitive value and returns an object of the
corresponding wrapper class.
Character charObj = new Character('\n');

ii. A constructor that takes a String object representing the primitive value, and
returns an object of the corresponding wrapper class; these constructor throw
NumberFormatException if the String parameter is not valid.
Boolean b1Obj = new Boolean(�True�); // case ignored : true
Boolean b2Obj = new Boolean(�XX�); // false
Double b3Obj = new Double(�3.142�);

- Common wrapper class utility methods:
i. Each wrapper class (except Character) defines static method

valueOf(String s) that returns the wrapper new object corresponding to the
primitive value represented by the String object passed as argument; throws
NumberFormatException if the String parameter is not valid.
Boolean bObj = Boolean.valueOf(�false�);
Integer intObj = Integer.valueOf(�2010�);

ii. Each overrides the equals() comparing two wrapper objects for object value
equality.

iii. Each overrides the toString() returning a String representing the primitive
value.

iv. Each overrides the hashCode() returning a hash value based on the primitive
value in the wrapper object.

- Numeric wrapper classes:
i. Each is a subclass of the abstract java.lang.Number class.
ii. Each defines typeValue() methods for converting primitive value in the

wrapper object to a value of any numeric primitive datatype.
Byte byteObj = new Byte ((byte)16);
Integer intObj = new Integer(42030);
short s = intObj.shortValue ؛()
long l = byteObj.longValue ؛()
Can cause potiential loss of information when primitive value in wrapper object
is converted to a narrower primitive datatype.

iii. Each numeric wrapper class defines a static method parseType(String s) that
returns the primitive numeric value represented by String represented by
String Object passed as argument; these methods throws
NumberFormatException if the String parameter is not a valid argument.

iv. Most important constants: <wrapper class>.MIN_VALUE, <wrapper
class>.MAX_VALUE

- Void class does not wrap any primitive value, it only denotes the class object

representing the primitive type void.

9.3) The Math class: [1] [2] [11] [12]

- Is a final class � CANNOT be subclassed.
- constructor is private � CANNOT be instantiated.
- All constants and methods are public and static � just access using class name.

Category Methods Example & declaration
Math.PI Constants
Math.E

Random public static double random() 0.0 ≤ random number < 1.0
Returned values are chosen
pseudorandomly with
(approximately) uniform
distribution from that range.

Absolute public static <type> abs(
<type> a)

Overloaded methods for int, long,
float, double versions.

Returns the absolute value of a
type value. If the argument is not
negative, the argument is
returned. NOTE: that if the
argument is equal to the value of
Integer.MIN_VALUE, or
Long.MIN_VALUE the most
negative representable int/long
value, the result is that same
value, which is negative.

public static <type> max (
<type> a, <type> b)
Overloaded methods for int, long,
float, double versions.

Returns the greater of two type
values. NOTE: If either value is
NaN, then the result is NaN.
Math.max(-0.0, +0.0) returns
+0.0

Comparing

public static <type> min(
<type> a, <type> b)
Overloaded methods for int, long,
float, double versions.

Returns the smaller of two type
values. NOTE: If either value is
NaN, then the result is NaN.
Math.min(-0.0, +0.0) returns
�0.0

public static double
ceil(double a)

Smallest integer greater than this
number.
double x = 0;
x = Math.ceil(8.4); // x = 9.0
x = Math.ceil(8.9); // x = 9.0
x = Math.ceil(-9.4); // x = -9.0
x = Math.ceil(-9.8); // x = -9.0

public static double
floor(double a)

Greatest integer smaller than this
number.
double x = 0;
x = Math.floor(8.4); // x = 8.0
x = Math.floor(8.9); // x = 8.0
x = Math.floor(-9.4); // x = -10.0
x = Math.floor(-9.8); // x = -10.0

Rounding

public static long round(double a)
public static int round(float a)

Returns the closest long/int to
the argument.
If the argument is negative
infinity or any value less than or
equal to the value of
WrapperClass.MIN_VALUE, the
result is equal to the value of
WrapperClass.MIN_VALUE.
If the argument is positive infinity
or any value greater than or equal
to the value of
WrapperClass.MAX_VALUE, the
result is equal to the value of
WrapperClass.MAX_VALUE.
Its algorithm works by +0.5/-0.5
to the argument if it is
positive/negative and truncate to
the nearest integer equivalent.
int x = 0;
x = Math.round(8.4); // x = 8
x = Math.round(8.9); // x = 9
x = Math.round(-9.4); // x = -9
x = Math.round(-9.8); // x = -10

 public static double rint
(double a)

Returns the closest double value
to a that is equal to a
mathematical integer. If two
double values that are
mathematical integers are equally
close to the value of the
argument, the result is the
integer value that is even.
double x = 0;
x = Math.rint(12.9); // x = 13.0
x = Math.rint(12.5); // x = 12.0
x = Math.rint(11.5); // x = 12.0

public static double exp(double a) Returns the exponential number e
(i.e., 2.718...) raised to the power
of a double value.

public static double pow(double a,
double b)

Returns of value of the first
argument raised to the power of
the second argument.
If (a == 0.0), then b must be
greater than 0.0; otherwise an
exception is thrown. An exception
also will occur if (a <= 0.0) and b
is not equal to a whole number.

public static double log(double a) Returns the natural logarithm
(base e) of a double value.

Exponential

public static double
sqrt(double a)

Returns the square root of a
double value. If the argument is
NaN or less than zero, the result is
NaN.

public static double sin(double a) Returns the trigonometric sine of
an angle.

public static double cos(double a) Returns the trigonometric cosine
of an angle.

Trigonometric
(angle input in
radians)

public static double tan(double a) Returns the trigonometric tangent
of an angle.

9.4) The String class: [1] [2] [3] [11] [12]

- Is a final class implements immutable character stings, which are read only once the
string has been created and initialized.

- Characters are represented as Unicode.
- There is no limitation in java on the length of a String, however the operating system

may impose limitations.
- A String literal is implemented as an anonymous String object; Java optimizes

handling of string literals: ONLY ONE anonymous String object is shared by all String
literals with the same contents EVEN across classes, but a String created by the new
operator is always a different new object, EVEN if it�s created from a previously
predefined literal.

Example:
public class AnonStrings {
 static String str1 = �You cannot touch me!�;
 public static void main(String args[]) {

 String emptyStr = new String();
 System.out.println(�0: � + emptyStr);

 String str2 = �You cannot touch me!�;
 String str3 = new String(str2);

 System.out.println(�1: � + (str1 == str2));
 System.out.println(�2: � + str1.equals(str2));

 System.out.println(�3: � + (str2 == str3));
 System.out.println(�4: � + str2.equals(str3));

 System.out.println(�5: � + (str1 == Auxiliary.str1));
 System.out.println(�6: � + str1.equals(Auxiliary.str1));
 }
}
class Auxiliary {
 static String str1 = �You cannot touch me!�;
}
Output:
0:
1: true
2: true
3: false
4: true
5: true
6: true
- Note a difference between a string & array; String has a method length() to get its

length, but array has a member variable length whose value is the number of elements
in the array.

- Strings are compared lexicographically.
Category Methods Example & declaration

Constructors Created from:
(a) literal.
(b) byte array.
(c) char array.
(d) StringBuffer.

String str3 = new String("Hi");
//new String() creates empty
string
byte[] b = {97, 98, 98, 97} ;
String s = new String(b); //
stores "abba"
StringBuffer strBuf = new
StringBuffer("axe");
String s = new String(strBuf);

public int length() Returns the length of this string. Reading
public char charAt(int index) Returns the character at the

specified index. An index ranges
from 0 to length() - 1.
if index is not valid
IndexOutOfBoundsException is
thrown. (case sensitive)

public int indexOf(int ch) Returns the index within this string
of the first occurrence of the
specified character. (case sensitive)

public int indexOf(int ch,
int fromIndex)

Returns the index within this string
of the first occurrence of the
specified character, starting the
search at the specified index. (case
sensitive)

public int indexOf(String str) Returns the index within this string
of the first occurrence of the
specified substring. (case sensitive)

public int indexOf(String str,
int fromIndex)

Returns the index within this string
of the first occurrence of the
specified substring, starting at the
specified index. (case sensitive)

Search

public int lastIndexOf(int ch) Returns the index within this string
of the last occurrence of the specified
character. (case sensitive)

public int lastIndexOf(int ch,
int fromIndex)

Returns the index within this string
of the last occurrence of the specified
character, searching backward
starting at the specified index. (case
sensitive)

public int
lastIndexOf(String str)

Returns the index within this string
of the rightmost occurrence of the
specified substring. (case sensitive)

public int
lastIndexOf(String str,
int fromIndex)

Returns the index within this string
of the last occurrence of the specified
substring. (case sensitive)

public boolean
equals(Object anObject)

Compares this string to the specified
object. The result is true if and only
if the argument is not null and is a
String object that represents the
same sequence of characters as this
object. (case sensitive)

public boolean
equalsIgnoreCase(String anothe
rString)

Compares this String to another
String, ignoring case
considerations.

public int compareTo(Object o) Compares this String to another
Object. If the Object is a String, this
function behaves like
compareTo(String). Otherwise, it
throws a ClassCastException (as
Strings are comparable only to other
Strings).

public int
compareTo(String anotherString
)

Compares two strings
lexicographically. The comparison is
based on the Unicode value of each
character in the strings. The
character sequence represented by
this String object is compared
lexicographically to the character
sequence represented by the
argument string.
0 strings are equals
> 0 the string is lexicographically
greater than the argument
< 0 the string is lexicographically
less than the argument.

Comparing

public int
compareToIgnoreCase(String str
)

Compares two strings
lexicographically, ignoring case
considerations.

Case
conversion

public String toLowerCase() Converts all of the characters in this
String to lower case using the rules
of the default locale, which is
returned by Locale.getDefault().
If no character in the string has a
different lowercase version, based on
calling the toLowerCase method
defined by Character, then the
original string is returned.

 public String toUpperCase() Converts all of the characters in this
String to upper case using the rules
of the default locale, which is
returned by Locale.getDefault().
If no character in this string has a
different uppercase version, based
on calling the toUpperCase method
defined by Character, then the
original string is returned.

Concatenation public String
concat(String str)

Concatenates the specified string to
the end of this string.

public String trim() Removes whitespaces from both
ends of this string. If this String
object represents an empty
character sequence, or the first and
last characters of character sequence
represented by this String object
both have codes greater than
'\u0020' (the space character), then
a reference to this String object is
returned. It trims all ASCII control
characters as well.
Whitespaces include:
�\t� \u0009 Horizontal tabulation
�\n� \u000A new line
�\f� \u000C form feed
�\r� \u000D carriage return
� � \u0020 space

public String
substring(int beginIndex)

Returns a new string that is a
substring of this string. The substring
begins with the character at the
specified index and extends to the
end of this string.

Extracting

public String
substring(int beginIndex,
int endIndex)

Returns a new string that is a
substring of this string. The substring
begins at the specified beginIndex
and extends to the character at
index endIndex - 1. Thus the length
of the substring is endIndex-
beginIndex.

public static String
valueOf(Object obj)

if the argument is null, then a string
equal to "null"; otherwise, the
value of obj.toString() is
returned.

public static String
valueOf(char[] data)

Returns the string representation of
the char array argument.

public static String
valueOf(char[] data,
int offset, int count)

Returns the string representation of
a specific subarray of the char array
argument. The offset argument is
the index of the first character of the
subarray. The count argument
specifies the length of the subarray.

Getting string
representation
for various
types

public static String
valueOf(<primitive
type> value)

Returns the string representation of
the <primitive type> argument.

- Passing null to indexOf or lastIndexOf will throw NullPointerException, passing
empty string returns 0, passing a string that�s not in the target string returns �1.

- + and += operators are overloaded for Strings.

9.5) The StringBuffer class: [1]

- Is a final thread-safe class, implements mutable character strings.
- The capacity of a StringBuffer is the maximum number of characters that a String
class can accommodate, before its size is automatically augmented.

Category Methods Example & declaration
public StringBuffer() Constructs a string buffer with no

characters in it and an initial capacity
of 16 characters

public StringBuffer
(int length)

Constructs a string buffer with no
characters in it and an initial capacity
specified by the length argument.

Constructors

public StringBuffer
(String str)

The initial contents of the string
buffer is a copy of the argument
string. The initial capacity of the
string buffer is 16 plus the length of
the string argument.

public int length() Returns the length of this string.
public char charAt(int index) Returns the character at the

specified index. An index ranges
from 0 to length() - 1.
if index is not valid
IndexOutOfBoundsException is
thrown. (case sensitive)

Changing &
Reading
characters

public void
setCharAt(int index, char ch)

The character at the specified index
of this string buffer is set to ch.

public StringBuffer
append(<primitive type> b)

Appends the string representation of
the <primitive type> argument to
the string buffer.

public StringBuffer
append(char[] str)

Appends the string representation of
the char array argument to this
string buffer.

public StringBuffer
append(char[] str, int offset,
int len)

Appends the string representation of
a subarray of the char array
argument to this string buffer.
Characters of the character array
str, starting at index offset, are
appended, in order, to the contents
of this string buffer. The length of
this string buffer increases by the
value of len.

public StringBuffer
append(Object obj)

Appends the string representation of
the Object argument to this string
buffer.

Appending,
(increase
length)

public StringBuffer
append(String str)

Appends the string to this string
buffer

public StringBuffer
insert(int offset, <primitive
type> b)

Inserts the string representation of
the <primitive type> argument
into this string buffer.

Inserting
(increase
length)

public StringBuffer
insert(int offset, char[] str)

Inserts the string representation of
the char array argument into this
string buffer.

public StringBuffer
insert(int index, char[] str,
int offset, int len)

Inserts the string representation of a
subarray of the str array argument
into this string buffer. The subarray
begins at the specified offset and
extends len characters. The
characters of the subarray are
inserted into this string buffer at the
position indicated by index. The
length of this StringBuffer
increases by len characters.

public StringBuffer
insert(int offset, Object obj)

Inserts the string representation of
the Object argument into this string
buffer.

public StringBuffer
insert(int offset, String str)

Inserts the string into this string
buffer.

public StringBuffer
delete(int start, int end)

Removes the characters in a
substring of this StringBuffer. The
substring begins at the specified
start and extends to the character
at index end - 1 or to the end of the
StringBuffer if no such character
exists. If start is equal to end, no
changes are made.

Deleting
(decrease
length)

public StringBuffer
deleteCharAt(int index)

Removes the character at the
specified position in this
StringBuffer (shortening the
StringBuffer by one character).

Reversing
(maintain the
same length)

public StringBuffer reverse() The character sequence contained in
this string buffer is replaced by the
reverse of the sequence.

public int capacity() Returns the current capacity of the
String buffer. The capacity is the
amount of storage available for
newly inserted characters; beyond
which an allocation will occur.

Manipulating
capacity

public void ensureCapacity(int
minimumCapacity)

Ensures that the capacity of the
buffer is at least equal to the
specified minimum. If the current
capacity of this string buffer is less
than the argument, then a new
internal buffer is allocated with
greater capacity. The new capacity is
the larger of:
- The minimumCapacity argument.
- Twice the old capacity, plus 2.
If the minimumCapacity argument is
nonpositive, this method takes no
action and simply returns.

 public void setLength(int
newLength)

Sets the length of this String buffer.
This string buffer is altered to
represent a new character sequence
whose length is specified by the
argument. if the newLength
argument is less than the current
length of the string buffer, the string
buffer is truncated to contain exactly
the number of characters given by
the newLength argument.

- The compiler uses StringBuffer to implement the String concatenation operator +
Example:
String str = 4 + �U� + �Only�;
is equivalent to:
String str =
 new StringBuffer().append(4).append(�U�).append(�Only�).toString();
The code does not create any temporary String object when concatenating several
things, where a single StringBuffer object is modified and finally converted to a
String.

- NOTES (VERY COMMON ERRORS IN THE EXAM):
(a) + and += operators are NOT overloaded for StringBuffer class, and it will produce

compile time error.
(b) equals method is NOT overriden for StringBuffer class, and it works just as ==

operator.
(c) Comparing or assigning StringBuffer to String will cause compile time error.
(d) trim() method is not a StringBuffer method.

Chapter 10:

Collections

10.1) A collection allows a group of objects to be treated as a single unit. Arbitrary objects can
be stored, retrieved and manipulated as elements of these collections. [12]

10.2) Collections Framework presents a set of standard utility classes to manage such

collections. [12]
(a) It contains core interfaces which allow collections to be manipulated independent of

their implementations. These interfaces define the common functionality exhibited by
collections and facilitate data exchange between collections.

(b) A small set of implementations that are concrete implementations of the core
interfaces, providing data structures that a program can use.

(c) A variety of algorithms to perform various operations such as, sorting and searching.

10.3) Collections framework is interface based, collections are implemented according to their

interface type, rather than by implementation types. By using the interfaces whenever
collections of objects need to be handled, interoperability and interchangeability are
achieved. [12]

10.4) Core Interfaces in the Collection Framework: [1]

Interface Description
Collection A basic interface that defines the operations that all classes that

maintain collections of objects typically implement.
Set Extends the Collection interface for sets that maintain unique

elements.
SortedSet Augments the Set interface for sets that maintain their elements in a

sorted order.
List Extends the Collection interface for lists that maintain their elements

in a sequence and need NOT be unique, i.e. the elements are in order.
Map A basic interface that defines operations that classes that represent

mappings of keys to values typically implement.
SortedMap Extends the Map interface for maps that maintain their mappings in key

order.

10.5) There is NO direct implementation of the Collection interface. [1]

Collection
<<interface>>

List
<<interface>>

Set
<<interface>>

SortedSet
<<interface>>

Map
<<interface>>

SortedMap
<<interface>>

10.6) Implementations of the core interfaces: [1] [12]
Interfaces

Data structure Set SortedSet List Map SortedMap
Hash table HashSet

(√ null)
 HashMap

(√ null)
Hashtable
(× null)

Resizable array ArrayList
(√ null)
Vector
(√ null)

Balanced tree TreeSet TreeMap
Linked list LinkedList

(√ null)

10.7) Classes that implement the interfaces use different storage mechanisms. [12]

(a) Arrays: Indexed access is faster. Makes insertion, deletion and growing the store more
difficult.

(b) Linked List: Supports insertion, deletion and growing the store. But indexed access is
slower.

(c) Tree: Supports insertion, deletion and growing the store. Indexed access is slower. But
searching is faster.

(d) Hashing: Supports insertion, deletion and growing the store. Indexed access is slower.
But searching is faster. However, requires the use of unique keys for storing
data elements.

10.8) By convention each of the Collection implementation classes provide a constructor to

create a collection based on the elements in the Collection object passed as argument.
By the same token, Map implementations provide a constructor that accepts a Map
argument. This allows the implementation of a collection (Collection/Map) to be
changed. BUT Collections and Maps are NOT interchangeable. [12]

10.9) Some of the operations in the Collection interface are optional, meaning that a

collection may choose not to provide a proper implementationof such an operation; in
such case, an UnsupportedOperationException is thrown when the optional operation is
invoked. The implementation of collections in the java.util package support all the
optional operations in the Collection Interface. [1]

10.10) Collection interface operations: [1] [2]
Category Methods Example & declaration

public int size() Returns the number of elements in this
collection.

public boolean isEmpty() Returns true if this collection contains no
elements.

public boolean
contains(Object o)

Returns true if this collection contains the
specified element.

Basic

public boolean add(Object o) Ensures that this collection contains the
specified element (optional operation).
Returns true if this collection changed as
a result of the call. (Returns false if this
collection does not permit duplicates and
already contains the specified element.)

 public boolean remove(Object o) Removes a single instance of the specified
element from this collection, if it is
present (optional operation). Returns true
if this collection contained the specified
element (or equivalently, if this collection
changed as a result of the call).

public boolean
containsAll(Collection c)

Returns true if this collection contains all
of the elements in the specified collection.

public boolean
addAll(Collection c)
(optional operation)

Adds all of the elements in the specified
collection to this collection.

public boolean
removeAll(Collection c)
(optional operation)

Removes all this collection's elements that
are also contained in the specified
collection.

public boolean
retainAll(Collection c)
(optional operation).

Retains only the elements in this
collection that are contained in the
specified collection. In other words,
removes from this collection all of its
elements that are not contained in the
specified collection.

Bulk

public void clear()
(optional operation).

Removes all of the elements from this
collection.

public Object[] toArray() Returns an array containing all of the
elements in this collection. If the
collection makes any guarantees as to
what order its elements are returned by
its iterator, this method must return the
elements in the same order.

Array

public Object[]
toArray(Object[] a)

Returns an array containing all of the
elements in this collection whose runtime
type is that of the specified array.

Iterators public Iterator iterator()
Interface has the following methods:
boolean hasNext();
Object next();
void remove();

Returns an iterator over the elements in
this collection. There are NO guarantees
concerning the order in which the
elements are returned (unless this
collection is an instance of some class
that provides a guarantee).

10.11) The operations performed by the addAll(), removeAll(), retainAll() methods can

be visualized by Venn diagrams. [1]

10.12) The class java.util.Collections class (NOT to be confused with the Collection

interface) provides static methods which implement polymorphic algorithms including
sorting, searching and shuffling elements. Operates on the collection passed as first
argument of the method;most methods accept a List object while a few operate on
arbitrary Collection objects. [1]

Methods Example & declaration
public static int
binarySearch(List list
, Object key)

Searches the specified list for the specified object using the
binary search algorithm.

public static void
fill(List list,
Object o)

Replaces all of the elements of the specified list with the
specified element.

public static void
shuffle(List list)

Randomly permutes the specified list using a default source
of randomness.

public static void
sort(List list)

Sorts the specified list into ascending order, according to
the natural ordering of its elements. All elements in the list
must implement the Comparable interface. Furthermore, all
elements in the list must be mutually comparable (that is,
e1.compareTo(e2) must not throw a ClassCastException
for any elements e1 and e2 in the list).

10.13) Sets: [1]

- Does not define any new method, but adds the restriction that duplicated are
prohibited.

- It models a mathematical set.
Set methods Corresponding mathematical operations

a.containsAll(b) b ⊆ a ? (subset)
a.addAll(b) a = a ∪ b (union)
a.removeAll(b) a = a � b (difference)
a.retainAll(b) a = a ∩ b (intersection)
a.clear() a = ∅ (empty set)

- HashSet class as an example of sets: [1]

HashSet()
Constructs a new, empty set.

HashSet(Collection c)
Constructs a new set containing the elements in the specified collection, but it
will contain no duplicates.

HashSet(int initialCapacity)
Constructs a new, empty set with the specified initial capacity.

HashSet(int initialCapacity, float loadFactor)
Constructs a new, empty set with the specified initial capacity and the specified
load factor(the ratio of number of elements stored to its current capacity).

Example:
Import java.util.*;
public class CharacterSets {
 int nArgs = args.length;

 // A set keeping track of all characters prevoiusly encountred
 Set encountered = new HashSet();

 // For each command line argument
 for (int i = 0; i < nArgs; i++) {
 String argument = args[1];

 // Convert string to a set of characters
 Set characters = new HashSet();
 int size = argument.length();

 // For each character in the argument
 for (int j = 0; j < size; j++)
 // append character
 characters.add(new Character(argument.charAt(j)));

 // Determine if there exists a common subset
 Set commonSubset = new HashSet(encountered);
 CommonSubset.retainAll(characters);

 boolean areDisjunct = commonSubset.size() == 0;

 if (areDisjunct)
 System.out.println(characters + � and � + encountered +
 � are disjunct�);
 else {
 // Determine superset and subset relations
 boolean isSubset = encountered.containsAll(characters);
 boolean isSuperset = characters.containsAll(encountered);
 if (isSubset && isSuperSet)
 System.out.println(characters + � is equivalent to � +
 encountered);
 else if (isSubset)
 System.out.println(characters + � is a subset of � +
 encountered);
 else if (isSuperset)
 System.out.println(characters + � is a superset of � +
 encountered);
 else
 System.out.println(characters + � and � + encountered + �
 have � + commonSubset + � in common�);
 }
 // Remember the characters
 encountered.addAll(characters);
 }
}
Running the program with the following arguments:
Java CharacterSets i said i am maids

Results in the following output:
[i] and [] are disjunct.
[d, a, s, i] is a superset of [i]
[i] is a subset of [d, a, s, i]

 [a, m] and [d, a, s, i] have [a] in common.
 [d, a, s, m, i] is equivalent to [d, a, s, m, i]

10.14) Lists: [1] [2]

- Lists are collections which maintain their elements in order (also called sequence), and
can contain duplicates.

- In addition to operations inherited from the Collection interface, the first interface
also defines operations that operate specially on lists: access by numerical position,
search in list, customized iterators, operations on parts of a list(called open range-view
operations).

- Vector and ArrayList classes implement dynamically resizable arrays, unlike the
ArrayList class, the Vector class is thread-safe.

Category Methods Example & declaration
Reading Object get(int index) Returns the element at the specified

position in this list.
void add(int index, Object
element)

Inserts the specified element at the
specified position in this list (optional
operation). Shifts the element
currently at that position (if any) and
any subsequent elements to the right
(adds one to their indices).

Inserting

void add(Object element) Appends the specified element to the
end of this list (optional operation).

boolean addAll(Collection c) Appends all of the elements in the
specified collection to the end of this
list, in the order that they are returned
by the specified collection's iterator
(optional operation).

boolean addAll(int index,
Collection c)

Inserts all of the elements in the
specified collection into this list at the
specified position (optional operation).
Shifts the element currently at that
position (if any) and any subsequent
elements to the right (increases their
indices).

Replacing Object set(int index, Object
element)

Replaces the element at the specified
position in this list with the specified
element (optional operation). Returns
the element previously at the specified
position.

Deleting boolean remove(int index) Removes the first occurrence in this
list of the specified element (optional
operation). If this list does not contain
the element, it is unchanged.

int indexOf(Object element) Returns the index in this list of the first
occurrence of the specified element, or
-1 if this list does not contain this
element.

Searching

int lastIndexOf(Object element) Returns the index in this list of the last
occurrence of the specified element, or
-1 if this list does not contain this
element.

ListIterator listIterator() Returns a list iterator of the elements
in this list (in proper sequence).

Iteration

ListIterator listIterator(int
index)

Returns a list iterator of the elements
in this list (in proper sequence),
starting at the specified position in this
list.

Open
range
view

List subList(int fromIndex, int
toIndex)

Returns a view of the portion of this
list between the specified fromIndex,
inclusive, and toIndex, exclusive.

interface ListIterator extends Iterator {
 boolean hasNext();
 boolean hasPrevious();

 Object next();
 Object previous();

 int nextIndex();
 int previousIndex();

 void remove();
 void add(Object o);
 void set(Object o);
}

10.15) Maps: [1] [2]

- Defines mappings from keys to values NOT allowing duplicate keys, each key maps to
at most one value.

- HashMap class is not thread-safe, the Hashtable class is.
Category Methods Example & declaration

Object put(Object key, Object
value)

Associates the specified value with the
specified key in this map (optional
operation). If the map previously
contained a mapping for this key, the
old value is replaced.

Object get(Object key) Returns the value to which this map
maps the specified key.

Object remove(Object key) Removes the mapping for this key
from this map if present (optional
operation).

boolean containsKey(Object key) Returns true if this map contains a
mapping for the specified key.

boolean containsValue(Object
value)

Returns true if this map maps one or
more keys to the specified value.

int size() Returns the number of key-value
mappings in this map. If the map
contains more than
Integer.MAX_VALUE elements, returns
Integer.MAX_VALUE.

Basic

boolean isEmpty() Returns true if this map contains no
key-value mappings.

void putAll(Map t) Copies all of the mappings from the
specified map to this map (optional
operation). These mappings will
replace any mappings that this map
had for any of the keys currently in the
specified map.

Bulk

void clear() Removes all mappings from this map
(optional operation).

Set keySet() Returns a set view of the keys
contained in this map. The set is
backed by the map, so changes to the
map are reflected in the set, and vice-
versa.

Collection values() Returns a collection view of the values
contained in this map. The collection is
backed by the map, so changes to the
map are reflected in the collection, and
vice-versa.

Collection
views

Set entrySet() Returns a set view of the mappings
contained in this map. Each element in
the returned set is a Map.Entry. The
set is backed by the map, so changes
to the map are reflected in the set,
and vice-versa.

interface Entry {
 Object getKey();
 Object getValue();
 Object setValue(Object value);
}

10.16) Sorted Sets and Sorted Maps: [1] [2]

- Objects can specify their natural order by implementing the Comparable interface, or be
dictated a total order by a comparator which implements the Comparator interface.

- All comparators implement the Comparator interface, which has the following single
method:

int compare(Object obj1, Object obj2)

The compare() method returns a negative integer, zero or a positive integer if the
first object is less than, equal to or greater than the second object, according to the
total order.

- Objects can specify their natural order by implementing Comparable interface. Many of
the standard classes in Java API, such as wrapper classes, String, Date and File
implement this interface. This interface defines a single method:

int compareTo(Object o)
returns negative, zero, positive if the current object is less than, equal to or
greater than the specified object.

In this case a natural comparator queries objects implementing Comparable about their
natural order. Objects implementing this interface can be used:

• As elements in a sorted set.
• As keys in sorted map.
• In lists which can be sorted automatically by the Collections.sort() method.

SortedSet interface methods SortedMap interface method
SortedSet headSet(Object toElement)
returns a view of a portion of this sorted
set, whose elements are strictly less than
the specified element.

SortedMap headMap(Object toElement)

SortedSet tailSet(Object toElement)
returns a view of a portion of this sorted
set, whose elements are greater than or
equal the specified element.

SortedMap tailMap(Object toElement)

SortedSet subSet(Object
fromElement, Object toElement)
returns a view of a portion of this sorted
set, whose elements range from
fromElement inclusive to toElement
exclusive.

SortedMap subMap(Object
fromElement, Object toElement)

Object first()
returns the first (minimum) element
currently in this sorted set.

Object firstKey()

Object last()
returns the last (maximum) element
currently in this sorted set.

Object lastKey()

Comparator comparator()
returns the comparator associated with
this sorted set, or null if the natural
ordering is used.

Comparator comparator()

TreeSet TreeMap

TreeSet() TreeMap()
TreeSet(Comparator c) TreeMap(Comparator c)
TreeSet(Collection c) TreeMap(Map m)
TreeSet(SortedSet s) TreeMap(SortedMap m)

FINAL NOTES: [12]
- Vector(5,10) means initial capacity 5, additional allocation (capacity increment) by 10.
- Stack extends Vector and implements a LIFO stack. With the usual push() and pop()

methods, there is a peek() method to look at the object at the top of the stack without
removing it from the stack.

- BitSet class implements a Vector of bits that grows as needed. Each component of the bit
set has a boolean value. The bits of a BitSet are indexed by nonnegative integers.
Individual indexed bits can be examined, set, or cleared. One BitSet may be used to modify
the contents of another BitSet through logical AND, logical inclusive OR, and logical
exclusive OR operations. By default, all bits in the set initially have the value false. A BitSet
has a size of 64, when created without specifying any size.

- ConcurrentModificationException exception (extends RuntimeException) may be thrown
by methods that have detected concurrent modification of a backing object when such
modification is not permissible. For example, it is not permssible for one thread to modify a
Collection while another thread is iterating over it. In general, the results of the iteration are
UNDEFINED under these circumstances. Some Iterator implementations (including those of
all the collection implementations provided by the JDK) may choose to throw this exception if
this behavior is detected. Iterators that do this are known as fail-fast iterators, as they fail
quickly and cleanly, rather that risking arbitrary, non-deterministic behavior at an
undetermined time in the future.

Chapter 11:

AWT components

11.1) The Java Foundation Classes (JFC) provide two frameworks for building GUI based
application, BUT both relies on the same event handling model: [1]
AWT
Abstract Windowing Toolkit

Swing

Relies on the underlying windowing
system on a specific platform to represent
its GUI components.

Implements a new set of light weight GUI
components that are written in java and
have a pluggable look and feel, they are
not dependent on the underlying
windowing system.

11.2) Partial inheritance hierarchy of components and containers in AWT: [1]

Component The superclass of all non-menu related components that provides basic
support for handling of events, changing of component size, controlling of
fonts and colors, and drawing of components and their contents.

Container A container is a component that can accommodate other components and
also other containers. Containers provide the support for building complex
hierarchical graphical user interface.

Panel A Panel is a container ideal for packing other components and panels to build
component hierarchies.

Applet An Applet is a specialized panel that can be used to develop programs that
run in a web browser.

Window The Window class represents a top-level window that has no title, menus or
borders.

Frame A Frame is optionally user resizable and movable top-level window that can
have a title-bar, an icon, and menus.

Dialog The Dialog class defines an independent, optionally user resizable window
that can only have a title-bar and a border. A Dialog window can be modal,
meaning that all input is directed to this window until it is dismissed.

The objects of these classes can be populated with GUI control components like buttons,
checkboxes, lists and text fields to provide the right interface and interaction with the
user.

11.3) Component class: [1]
- All non-menu related elements that comprise a graphical user interface are divided

from this abstract class.
Dimension getSize() // get size in pixels
void setSize(int width, int height)

java.lang.Object

Component
{abstract}

Container

Panel Window

Java.applet.Applet

GUI Control components
are concrete subclasses
of this class

Dialog Frame

void setSize(Dimension d)

Point getLocation() // return top-left corner of the component
void setLocation(int x, int y)
void setLocation(Point p)

Rectangle getBounds()
void setBounds(int x, int y, int width, int height)
void setBounds(Rectangle r)

void setForeground(Color c)
void setBackground(Color c)

Font getFont()
void setFont(Font f)

void setEnabled(boolean b)
If set to true, the components acts as normal, and can respond to user input and
generate events, if the argument is false, then the component appears grayed out and
does not respond to user interaction, initially all components are enabled.

void setVisible(boolean b)
It influence the visibility of the child components, default visibility is true for all
components except Window, Frame, Dialog, whose instances must explicitly be made
visible by this method.

11.4) Container class: [1]
- It defines components for nesting components in a container.
- It provides functionality for building complex hierarichal graphical user interfaces.
- It defines a component hierarchy in contrast to the inheritance hierarchy defined by

classes.
- It provides the overloaded method add() to include components in the container.
- A container uses a layout manager to position its components in the container.

11.5) Panel class: [1]
- It provides intermediate level of GUI organization.
- It is a recursively nested container that is not a top-level window.
- It does not have a title, menus or borders.
- Ideal for packing other components and panels to build component hierarchies using

inherited add() methnod.

11.6) Applet class: [1]
Used to develop programs that run in a web browser.

11.7) Window class:
- It does not have title, menus or borders.
- Represent a top level window, and cannot be incorporated into other components.
- It is seldom used directly, instead its subclasses Frame and Dialog are used to provide

independent top-level windows.
void pack()

initialize the layout manager of the sub-components, leading to the window size being
set to match the preferred size of its sub-components, usually called after the
component hierarchy has been constructed to facilitate the layout of the
subcomponents in the window.

void show()
used to make the window actually visible and bring it to front, unlike other components,
windows are initially hidden, NOTE: setVisible() method can be used to make a
window visible without bringing it to the front.

void dispose()

when a window is no longer needed, this method is called to free the windowing
resources, it does not actually delete the window object, the window object should not
be used often a call to this method.

11.8) Frame class: [1]
- A frame is an optionally user resizable and movable top-level window that can have a

title-bar, an icon, and menus.
- Usually the starting point of a GUI application and serves as a root of the component

hierarchy.
- It can contain several panels which inturn can hold other GUI control components and

other nested panels
Frame()
Frame(String title)
All constructors create an initially invisible frame.

11.9) Dialog class: [1]
- A dialog is an optionally user resizable and movable top-level window with a title bar.
- It doesn't have an icon or a menu-bar.
- It can be a root of a component hierarchy.
- It can be modal, meaning that all input is directed to its window until it is dismissed.
Dialog(Frame parent)
Dialog(Frame parent, boolean modal)
Dialog(Frame parent, String title)
Dialog(Frame parent, String title, boolean modal)

All constructors create an initially invisible dialogbox.
- A dialog box is non-modal by default.

11.10) GUI control components: [1]
- Are the primary components of a graphical user interface that enable user interaction.
- They are concrete subclasses of the Component class
Button A button with a textual label, designed to invoke an action when pushed,

called a push button.
Canvas A generic component for drawing and designing new GUI components.
Checkbox A checkbox with a textual label that can be toggled on and off. Checkboxes

can be grouped to represent radio button.
Choice A component that provides a pop-up menu of choices. Only the current choice

is visible in the Choice component.
Label A label is a component that displays a single line of read-only, non-selectable

text.
List A component that defines a scrollable list of text items.
Scrollbar A slider to denote a position or a value.
TextField A component that implements a single line of optionally editable text.
TextArea A component that implements multiple lines of optionally editable text.

- The following three steps are essential in making use of a GUI control manager:
(a) A GUI component is created by calling the appropriate constructor.
(b) The GUI component is added to a container using a layout manager; this usually

invokes invoking the overloaded method add() on a container with the GUI control
component as the argument.

(c) Listeners are registered with the GUI component, so that they can receive events
when these occur.

- Since these controls are subclass of the Component class, they all generate keyboard
and mouse events.

11.11) Button class: [1]

Button ();
Button (String label);

String getLabel ();
void setLabel (String label);

11.12) Canvas class: [1]

- It doesn�t have any default graphical representation or any event handlers of its own.
- Is usually subclassed to customized GUI components consisting of drawings or images,

and can handle user input events relating to mouse and keyboard actions.
- The paint() method is usually overridden to render graphics in the component.

11.13) Checkbox & CheckboxGroup classes: [1]
- A Checkbox object can be in one of two states:

true : meaning it is checked.
false : meaning it is unchecked.

Checkbox();
Checkbox(String label);
Checkbox(String label, boolean state);
Checkbox(String label, boolean state, CheckboxGroup group);

- If the state is not explicitly specified in the appropriate constructor, the initial state is

unchecked.
- A Checkbox can be incorporated in a CheckboxGroup to implement radio buttons.
- Unless the CheckboxGroup is not specified in the appropriate constructor, the Checkbox

is not part of any CheckboxGroup.

boolean getState();
void setState(boolean state);

String getLabel();
void setLabel(String label);

CheckboxGroup getCheckboxGroup();
void setCheckboxGroup(CheckboxGroup group);

- CheckboxGroup only allows a single selection.

Checkbox getSelectedCheckbox();
void setSelectedCheckbox(Checkbox box);

- CheckboxGroup object does NOT have a graphical representation and is NOT a

subclass of component, it is just a class to implement mutual exclusion among a set of
checkboxes.

11.14) Choice class: [1]

- Constructing a pop-up menu of choices involves the following steps:
(a) Creating a Choice object using the single default constructor provided.
(b) Adding the items using the add() method; NOTE: that the items in the pop-up

menu are strings.

void add(String item);

int getItemCount();

String getItem(int index);

String getSelectedItem();
int getSelectedIndex();

void select(int pos);
void select(String str);

11.15) Label class: [1]

- It doesn�t generate any special events.

Label();
Label(String text);
Label(String text, int alignment);

- Alignment can be specified by the following constants of the Label class; the default

alignment is LEFT:
public static final int LEFT
public static final int CENTER
public static final int RIGHT

String getText();
void setText(String text);

int getAlignment();
void setAlignment(int alignment);

11.16) List class: [1]

- The number of items that can be visible in the list box is defined as the number of
rows in the list.

- The list can be of course have any number of text items, and a scrollbar appears when
necessary to scroll the list.

- A list can be constructed to allow either single or multiple selection(s).
- By default, multiple selection is not allowed.

List();
List(int rows);
List(int rows, boolean multipleMode);

- Constructing a list involves the following steps:
(a) Creating a list object.
(b) Adding the items using the add() method, the items are strings.

void add(String item);
void add(String item, int index);

int getRows();

boolean isMultipleMode();

int getItemCount();

String getItem(int index);
String[] getItems();

String getSelectedItem();
int getSelectedIndex();
String[] getSelectedItems();
int[] getSelectedIndexes();

void select(int index);
void select(String str);
void deselect(int index);

11.17) Scrollbar class: [1]

- can be used to:
(a) indicate a relative position of the visible contents in relation to the whole

document.
(b) controller to specify a value from a given interval.

- Scrollbar has vertical orientation as default, and it can be either horizontal or
vertical.

- Clicking on any gadgets(arrowheads) scrolls one unit, the default unit size is 1.
- Clicking on the area between an arrowhead and the slider scrolls by one block; the

default size is 10 units.
Public static final int HORIZONTAL
Public static final int VERTICAL

Scrollbar();
Scrollbar(int orientation);
Scrollbar(int orientation, int value, int visible, int minimum, int
maximum);

Int getValue();

Int getMinimum();
Int getMaximum();
Int setMinimum(int newMinimum);
Int setMaximum(int newMaximum);

Int getVisibleAmount();
void setVisibleAmount(int newAmount);

int getUnitIncrement();
void setUnitIncrement(int v);
int getBlockIncrement();
void setBlockIncrement(int v);

11.18) TextField and TextArea: [1]

- TextComponent is a subclass of java.awt.Component
- Text in the TextComponent can be read-only or editable.
- The size of the text field is measured in columns.
TextField();
TextField(String text);
TextField(int columns);
TextField(String text, int columns);
- TextArea class implements multiple lines of optionally editable text, these lines are

separated by the �\n� (new line character).
- The size of TextArea is measured in columns and rows
TextArea();
TextArea(String text);
TextArea(int rows, int columns);
TextArea(String text, int rows, int columns);
TextArea(String text, int rows, int columns, int scrollbars);

public static final int SCROLLBARS_BOTH
public static final int SCROLLBARS_VERTICAL_ONLY
public static final int SCROLLBARS_HORIZONTAL_ONLY
public static final int SCROLLBARS_NONE

- By default, SCROLLBARS_BOTH is selected.

TextComponent

TextField TextArea

Methods for both TextField and TextArea:
int getColumns();
void setColumns(int columns);

String getText();
void setText(String text);

String getSelectedText();

boolean isEditable();
void setEditable(boolean b);

- For fixed pitch fonts, the number of columns is equal to the number of characters in

the text line, for proportional (variable) pitch fonts, the column width is taken to be
average character width of the font used for rendering the text.

11.19) Menu components: [1]

- MenuBar class implements a menu bar that can contain pull-down menus.
- Menu class are the pull-down menus; and the add() method can be used to add

menus to a menu-bar, and the remove() method can be used to remove menus from
a menu-bar.

- A menu-bar can be attached to a Frame object; NOTE: that an Applet is not a
subclass of the Frame class, and therefore CANNOT have a menu bar.

- The MenuItem class defines a menu item that has a textual label, and a keyboard
shortcut can also be defined for a menu item.

- Since a Menu is also a MenuItem, menus can be nested to create submenus.
- A MenuItem object can be used by add() method; a separator can be added using
addSeparator() method in the Menu object.

- PopupMenu represent a pop-up menu that can be poppedup at a specified position
within a component, and CANNOT be contained in a menu-bar.

- CheckboxMenuItem class implements a checkbox with a textual label that can appear
in a menu.

- Follow these steps to create a menu-bar for a frame:
(a) Create a menubar
(b) Create a menu
(c) Create menu items and add them to the menu (appear from top to bottom

according to the order in which they are added to the menu).

Java.lang.Object

MenuComponent
{abstract}

MenuBar MenuItem

Menu CheckboxMenuItem

PopupMenu

(d) Add each menu to a menubar. The menus appear from left to right in the menu-
bar.

(e) add the menu-bar to the frame.
<framename>.setMenuBar(MenuBarObject)

Chapter 12:

Layout Manager

12.1) A layout manager implements a layout policy that defines spatial relationships between
components in a container; these relationships or constraints specify the placement and
sizes of components and come into play when the container is resized. A layout manager
works in conjunction with a container holding the components. [1]

12.2) Overview of layout manager: [1]

Manager Description
FlowLayout Lays out the components in row-major order: in rows growing from

left to right, and rows placed top to bottom in the container(→↓).
This is the default layout manager for the Panel and Applet.

GridLayout Lays out the components in a specified rectangular grid, from left to
right in each row, and filling rows from top to bottom in the
container(→↓).

BorderLayout Up to five components can be placed in a container in locations
specified by the following directions: north, south, west, east and
center. This is the default layout manager for Window and its
subclasses (Frame and Dialog)

CardLayout Components are handled as a stack of indexed cards with only the
top component being visible in the container.

GridBagLayout Customizable and flexible layout manager that lays out the
components in a rectangular grid. A component can occupy multiple
cells in the grid.

12.3) Common methods for designing a layout. [1]

LayoutManager getLayout();
void setLayout(LayoutManager mgr);

12.4) For adding components to a container: [1]

Component add(Component comp);
Component add(Component comp, int index);
void add(Component comp, Object constraints);
void add(Component comp, Object constraints, int index);
- The index argument can be used to specify a position where the component should be

inserted; the value �1 inserts the component at the end, which is the default
placement.

- The constraints argument specifies properties that are used by the layout manager to
place the components in the container. These properties are specific to the layout
manager used.

12.5) Components can be removed from a container: [1]

void remove(int index);
void remove(Component comp);
void removeAll();

12.6) Applications usually NEVER call the methods of the layout manager directly; since the

layout manager is registered with a container, the container calls the appropriate
methods in the layout manager. [1]
Methods of the Container class Methods of the LayoutManager Interface
add() addLayoutComponent()
doLayout() layoutContainer()
getMinimumSize() minimumLayoutSize()
getPreferredSize() preferredLayoutSize()
remove or removeAll() removeLayoutComponent()

A typical scenario for updating the layout, when the container size changes, is as
follows:

(a) The container�s invalidate() method is invoked. This makes the container and
the parents above it in the component hierarchy as neading layout updating.

(b) The container�s validate() method is called. This invocation leads to the
following chain of events, resulting in the layout of the container and its parents
being updated:
- The validate() method invokes the container�s doLayout() method.
- The doLayout() method delegates the job to its layout manager, by calling the

layout manager�s layoutContainer() method and by calling the layout
manager�s layoutContainer() method and passing itself as the argument.

12.7) These are two types of containers: [1]

- Containers that must be attached to a parent container. They can�t exist on their own.
Objects of the Panel class and its subclass Applet are typical examples.

- Containers that exist independently and cannot be put in other containers. They are
sometimes called top-level windows. They denote the root of a component hierarchy.
Window class and its subclasses Frame and Dialog are typical examples.

12.8) A component can request a certain size, NOTE: it is not certain that the layout manager

will honor it.

12.9) Layout manager in the AWT always gives precedence to placement if honoring the

preferred size would violate the layout policy. [1]

12.10) FlowLayout manager: [1]

- Components added to the container are placed in rows that grow from left to right, the
rows are constructed from top to bottom in the container (sometimes called row-major
allocation), components towards the end of a row spill over to the next row if there is
not enough space in the current row.

- It honors the preferred size of the components, i.e. the size of the components NEVER
changes, regardless of the size of the container; if the container is too small, the
rendering of the component appears cropped.

- It is the default layout manager of the Panel, and hence, Applet class.
FlowLayout();
FlowLayout(int alignment);
FlowLayout(int alignment, int horizontalgap, int verticalgap);
Alignmentand gap properties apply to all the components in the container, the default
alignment is centered rows, and the default gap is five pixels both vertically and
horizontally.
public static final int LEFT
public static final int RIGHT
public static final int CENTER

12.11) GridLayout manager: [1]

- It divides the region of the container into rectangular grid.
- Each component is placed in a cell in this grid, and this position uniquely identified by

the row and column number that are one-based.
- Only one component can be placed in each cell.
- All the cells in the grid have the same size.
- The cell size is dependent on the number of components to be placed in the container

and the container�s size.
- A component is resized to fill the cell. (To avoid components being stretched is to first

stick the component in a panel, and then add the panel to the container because
components in a panel does not stretch when the FlowLayout manager is used).

- It ignores a component�s preferred size.
- After a GridLayout has been constructed and registered with a container, components

are added left to right and top to bottom (i.e. row-major)

GridLayout(); // ≡ GridLayout(1,0); // one row with any number of
components added.

GridLayout(int rows, int columns);

GridLayout(int rows, int columns, int horizontalgap, int verticalgap);

- Either rows or columns can be zero, BUT NOT both; the geometry of the grid is then

determined by the non-zero value and the number of components added. The default
gap between components is zero pixels, both horizontally and vertically.

12.12) BorderLayout manager: [1]

NORTH

W
E
S
T

CENTER

E
A
S
T

SOUTH

- Allows one component to be placed in each of the four compass directions in a

container, any space left over can be used for a fifth component in the center of the
container.

- Not all regions need to be occupied with a component.
- Adding more than one component to a region is not recommended; ONLY the last

component added to a region is shown.
- The order in which the components are added to the container is irrelevant.
- It is the default layout manager for the Window class and its subclasses (Frame and
Dialog).

BorderLayout();
BorderLayout(int horizontalgap, int verticalgap);

The default gap in either direction is zero pixels.

Public static final String NORTH = �North�
Public static final String SOUTH = �South�
Public static final String EAST = �East�
Public static final String WEST = �West�
Public static final String CENTER = �Center�

- Adding components:
Component add(Component comp);
void add(Component comp, Object constraints);
- The default region is CENTER, and the region can be explicitly specified using the

constraints argument.
- If a north or a south component exists, it will stretch horizontally across the width of

the container, and the BorderLayout manager will attempt to honor the preferred
height of the components in the north and south regions.

- A west or east component is sandwiched between any north or south component,
otherwise it stretches vertically along the height of the container, and the
BorderLayout manager will attempt to honor the preferred width of the components in
the west and east regions.

- The center can be stretched both horizontally and vertically.

12.13) CardLayout manager: [1]

- Handles the component in a container like a stack of indexed cards, where ONLY the
top is visible, and it fills the whole region of the container.

- The card layout does not give any visual clue that the container consists of a stack of
components.

CardLayout();
CardLayout(int horizontalgap, int verticalgap);

- Both horizontal and vertical gaps between the edges of a component and borders of

the container can be specified, the default gap in either direction is zero pixels.
- Individual components can be added to a container by using the add() methods from

the Container class. The constraints argument in the add() methods is a String
object which can be associated with the component, and later used to make this
particular component visible using the show() method.
void show(Container parent, String name);

void first(Container parent);
void next(Container parent);
void previous(Container parent);
void last(Container parent);

The parent argument is the container associated with the card layout manager, these
methods can be used to choose which card should be shown.

NOTE: methods are invoked on a CardLayout object not on the parent container.

12.14) GridBagLayout manager: [1]

- The GridBagLayout policy uses a rectangular grid but unlike the grid layout manager,
a component can occupy multiple cells in the grid, and the width and the height of the
cells need not to be uniform, i.e. the component can span several rows and columns,
but the region it occupies is always rectangular.

- The components in the container can have different sizes, i.e the GridBagLayout
allows different size components to be aligned in the container.

- Constructing the layout:
(a) Create an object of the class GridBagLayout using the default constructor.
(b) Set the layout manger for the container.
(c) Create an object of the class GridBagConstraints.
(d) For each component to be added:

i- Fill in the layout information in the GridBagConstraints object.
ii- Add the component supplying the GridBagConstraints.

- NOTE: The same GridBagConstraints object can be reused for adding other

component; and can be specified using the public data members.

GridBagConstraints();
GridBagConstraints(int gridx, int gridy,
 int gridwidth, int gridheight,
 double weightx, double weighty,
 int anchor,
 int fill,
 Insets insets,
 int ipadx, int ipady);

Allotted display area

Filling and anchoring area

Bounds of component

Component�s preferred size

Location:
int gridx
int gridy
They define the column and row positions of the upper left corner of the component in
the grid.
Both values can be set to GridBagConstraints.RELATIVE, the components are then
added in relation to the previous component and its default values for these member
variables.

Dimension:
int gridwidth
int gridheight
They specify the number of cells occupied by the component horizontally and vertically;
can be either GridBagConstraints.RELATIVE or GridBagConstraints.REMAINDER, the
value GridBagConstraints.REMAINDER indicates that the component extends to the end
of the row or column (i.e. last component in the row or column) the default value is 1 for
each cell.
The value GridBagConstraints.RELATIVE should be used to specify that the component
is next-to-last in its row (for gridwidth) or column(for gridheight).

Growth Factor:
double weightx
double weighty
Define the portion of the �slack� that should be allocated to the area occupied by the
component.
Default value is zero for both, i.e. the area allocated to the component does not grow
beyond the preferred size.

Anchoring:
int anchor
public static final int CENTER
public static final int NORTH
public static final int NORTHEAST
public static final int EAST
public static final int SOUTHEAST
public static final int SOUTH
public static final int SOUTHWEST
public static final int WEST

 Top Insets

Left right

 bottom

Filling and anchoring

 ipady padding

ipadx ipadx

 ipady

Component

public static final int NORTHWEST
Specify where a component should be placed within its display area. If the component
does not fill its allocated area, it can be anchored specifying one of the constants.
The default value is GridBagConstraints.CENTER.

Filling:
int fill
public static final int NONE
public static final int BOTH
public static final int HORIZONTAL
public static final int VERTICAL
How the component is to stretch and fill its display area. The default is
GridBagConstraints.NONE

Padding:
int ipadx
int ipady
Specifies the padding that will be added internally to each side of the component. The
dimension of the component will be padded in the horizontal (2 × ipadx) and the
vertical (2 × ipady). The default value is zero pixels in either direction.

Insets:
Insets insets
The insets variable defines the external padding (border) around the component and its
display area. The default value is (0, 0, 0, 0) specifying top, left, bottom, right.

Chapter 13:

Event Handling

13.1) Event handling in java is based on the event delegation model. Its principal elements
are: [1]

(1) Event classes that can encapsulate information about different types of user interaction.
(2) Event source objects that inform event listeners about events when these occur and

supply the necessary information about these events.
(3) Event listener objects that are informed by an event source when designated events

occur, so that they can take appropriate action.

13.2) Handling events in a GUI application, using the event delegation model, can be divided

into the following two tasks when building the application: [1]
(1) Setting up the propagation of events from event sources to event listeners.
(2) Providing the appropriate actions in event listeners to deal with the events received.

13.3) Partial Inheritance hierarchy of Event classes. [1]

13.4) The EventObject class provides a method that returns the object that generated the
event: [1]
Object getSource()

13.5) The AWTEvent class provides a method that returns an event�s id: [1]

int getID()

13.6) The AWTEvent class is divided into two groups: [1]

Semantic Events Low-level Events
ActionEvent
AdjustmentEvent
ItemEvent
TextEvent

ComponentEvent
ContainerEvent
FocusEvent
KeyEvent
MouseEvent
PaintEvent
WindowEvent

High-level semantic events represent user interface action with a GUI component (
clicking a button, selecting a menu item, selecting a checkbox, scrolling, and changing
text); while Low-level events represent input and window operations. Several low-level
events can constitute a single semantic event.

java.lang.Object

java.util.EventObject

java.awt.AWTEvent
{abstract}

ComponentEvent ItemEvent AdjustmentEvent TextEventActionEvent

InputEvent
{abstract}

PaintEventFocusEvent WindowEventContainerEvent

KeyEvent MouseEvent

13.7) ActionEvent class (Semantic Event): [1]
- Generated when an action performed on a GUI component
- The GUI components that generate this event are:

Button: when a button is clicked.
List: when a list item is double-clicked.
MenuItem: when a menu item is selected.
TextField: when the Enter key is hit in the text field.

- This function returns the command name associated with this action(button label, list-
item name, menu-item name or text)
String getActionCommand()

- This function returns the sum of the modifier constant corresponding to the keyboard
modifiers held down during the action.
int getModifiers()
public static final int SHIFT_MASK
public static final int CTRL_MASK
public static final int META_MASK
public static final int ALT_MASK

13.8) AdjustmentEvent class (Semantic Event): [1]

- Generated when adjustments are made to an adjustable component like a scrollbar
- The GUI component that generates the adjustment event is

Scrollbar: when any adjustment is made to the scrollbar.
- This function returns the current value designated by the adjustable component.
int getValue()

13.9) ItemEvent class (Semantic Event): [1]

- Generated when an item is selected or deselected in an item selectable component.
- GUI components that generate this event are:

Checkbox: when the state of the checkbox changes.
CheckboxMenuItem: when the state of the checkbox associated with a menu item

changes.
Choice: when an item is selected or deselected in a choice list.
List: when an item is selected or deselected from a list.

- This function returns the object that was selected or deselected in a choice-list (label of
the Checkbox or CheckboxMenuItem, or label of the item in a Choice or a List, is
returned as String object)
Object getItem()

- This function returns a value indicating whether it was selection or deselection that took
place.
int getStateChange()

13.10) TextEvent class (Semantic Event): [1]

- Generated whenever the content of a text component is changed.
- GUI components that generate this event are subclasses of the TextComponent class:

TextArea
TextField

13.11) ComponentEvent class (Low-level Event): [1]

- Generated when a component is hidden, shown, moved, or resized, they are handled by
the AWT, and normally not directly dealt by the application.

- This function returns the same object as getSource() method, but the returned
reference is of type Component.

Component getComponent()

13.12) FocusEvent class (Low-level Event): [1]

- Generated when a component gains or loses focus, having the focus means that the
component can receive keystrokes.

- The inherited method getID() from its superclass AWTEvent can be used to determine
whether the focus was lost or gained (FocusEvent.FOCUS_LOST,
FocusEvent.FOCUS_GAINED).

- Focus can be lost either permanently or temporarily, and this can be determined by the
method.

Boolean isTemporary()

13.13) KeyEvent class (Low-level Event): [1]

- Generated when the user presses or releases a key, or does both (i.e. types a
character)

- The inherited method getID() from its superclass AWTEvent can be used to denote the
constant indicating the action:
public static final int KEY_PRESSED
public static final int KEY_RELEASED
public static final int KEY_TYPED

- The inherited method long getWhen() from the parent class InputEvent can be used
to get the time when the event took place.

- To get the integer key-code (that are defined as constants in the KeyEvent) associated
with the key if pressed or released, you can use the following function:
int getKeyCode()

- To get the integer Unicode that results from hitting a key, you can use the following
function:
char getKeyChar()

13.14) MouseEvent class (Low-Event): [1]

- Generated when the user moves the mouse or presses a mouse button.
- The inherited method getID() from its superclass AWTEvent can be used to denote the

exact action is identified by the following constants in the MouseEvent class:
public static final int MOUSE_PRESSED
public static final int MOUSE_RELEASED
public static final int MOUSE_CLICKED
public static final int MOUSE_DRAGGED
public static final int MOUSE_MOVED
public static final int MOUSE_ENTERED
public static final int MOUSE_EXITED

- The inherited method long getWhen() from the parent class InputEvent can be used
to get the time when the event took place.[1]

- Use the following functions to get the x- and/or y- position of the event relative to the
source component.[1]
int getX()
int getY()
Point getPoint()

- Use the following function to translates the event's coordinates to a new position by
adding specified x (horizontal) and y (vertical) offsets
void translatePoint(int dx, int dy)

- Use the following function to return the number of clicks associated with the event,
which is useful for detecting such events as double clicks.[1]
int getClickCount()

13.15) PaintEvent class (Low-Event): [1]

- Generated when a component should have its paint()/update() methods invoked.
These events are handled internally by the AWT and should not directly be dealt with by
the application.

13.16) WindowEvent class (Low-Event): [1]

- Generated when an important operation is performed on a window, these operations
are identified by the following constants, the inherited getID() method returns the
specific type of the event:

public static final int WINDOW_OPENED

Only once for a window when it is create , opened and made visible the first time.
public static final int WINDOW_CLOSING

When the user action dictates that the window should be closed, the application
should explicitly call either setVisible(false) or dispose() on the window as a
response to this event.

public static final int WINDOW_CLOSED
After the Window has been closed as result of a call to setVisible(false) or
dispose()

public static final int WINDOW_ICONIFIED
When the window is iconified

public static final int WINDOW_DEICONIFIED
When the window is de-iconified

public static final int WINDOW_ACTIVATED
When the window is activated, i.e. keyboard events will be delivered to the window or
its subcomponents.

public static final int WINDOW_DEACTIVATED
When the window is deactivated, i.e. keyboard events will no longer be delivered to
the window or its subcomponents.

- It has a useful method that returns the Window object that caused the event.
Window getWindow()

13.17) Semantic Event handling: [1]

Event Type Event Source Listener Registration and
Removal Methods provided
by the source

Event Listener
Interface
implemented by a
listener

ActionEvent Button
List
MenuItem
TextField

addActionListener
removeActionListener

ActionListener

AdjustmentEvent Scrollbar addAdjustmentListener
removeAdjustmentListener

AdjustmentListener

ItemEvent Choice
Checkbox
CheckboxMenuItem
List

addItemListener
removeItemListener

ItemListener

TextEvent TextArea
TextField

addTextListener
removeTextListener

TextListener

13.18) Low-Level Event Handling: [1]

Event Type Event Source Listener Registration and
Removal Methods provided
by the source

Event Listener
Interface
implemented by a
listener

ComponentEvent Component addComponentListener
removeComponentListener

ComponentListener

ContainerEvent Container addContainerListener
removeContainerListener

ContainerListener

FocusEvent Component addFocusListener
removeFocusListener

FocusListener

KeyEvent Component addKeyListener
removeKeyListener

KeyListener

MouseEvent Component addMouseListener
removeMouseListener
addMouseMotionListener
removeMouseMotionListener

MouseListener

MouseMotionListener

WindowEvent Window addWindowListener
removeWindowListener

WindowListener

13.19) Semantic Event listener interfaces and their methods:[1]

Event Listener Interface Event Listener methods
ActionListener actionPerformed(ActionEvent evt)
AdjustmentListener adjustmentValueChanged(AdjustmentEvent evt)
ItemListener itemStateChanged(ItemEvent evt)
TextListener textChanged(TextEvent evt)

13.20) Low-level Event listener interfaces and their methods: [1]

Event Listener Interface Event Listener methods
ComponentListener componentHidden(ComponentEvent evt)

componentMoved(ComponentEvent evt)
componentResized(ComponentEvent evt)
componentShown(ComponentEvent evt)

ContainerListener componentAdded(ComponentEvent evt)
componentRemoved(ComponentEvent evt)

FocusListener focusGained(FocusEvent evt)
focusLost(FocusEvent evt)

KeyListener keyPressed(KeyEvent evt)
keyReleased(KeyEvent evt)
keyTyped(KeyEvent evt)

MouseListener mouseClicked(MouseEvent evt)
mouseEntered(MouseEvent evt)
mouseExited(MouseEvent evt)
mousePressed(MouseEvent evt)
mouseReleased(MouseEvent evt)

MouseMotionListener mouseDragged(MouseEvent evt)
mouseMoved(MouseEvent evt)

WindowListener windowActivated(WindowEvent evt)
windowClosed(WindowEvent evt)
windowClosing(WindowEvent evt)
windowDeactivated (WindowEvent evt)
windowDeiconified(WindowEvent evt)
windowIconified(WindowEvent evt)
windowOpened(WindowEvent evt)

13.21) How is the association between the source and listener established? [1]

(2) Each event source defines methods for registering(addXListener()) and removing(
removeXListener()), which implement a particular listener interface.

(3) Each XListener interface defines methods which accept a specific event type as
argument.

13.22) How does the event source inform the event listener that a particular event it is

interested in has occurred? [1]
(1) It calls a particular method in the listener; to insure that the listener really does

provide the relevant method that can be called by the event source, the listener
must implement a listener interface XListener.

(2) Each registeration and removal method in an event source takes as argument the
corresponding XListener interface.

13.23) The events generated by an event source are independent of any enclosing component,

i.e. an event source transmits the same events regardless of its location in the
component hierarchy. [1]

13.24) Events generated by an event source component are also genrated by subclasses of the

source component, unless explicitly inhibited. [1]

13.25) An event listener interface can contain more than one method. This is true for all low-

level event classes. [1]

13.26) MouseEvent has two listener interfaces: MouseListener and MouseMotionListener. A

source that generates a MouseEvent provides two sets of registeration and removal
methods corresponding to the two listener interfaces, and can dispatch the MouseEvent
to the appropiate listeners, based on the interface these listeners implement. [1]

13.27) All listeners of particular event are notified, but the order in which they are notified is

NOT necessarily the same as the order in which they were added as listeners. [1]

13.28) Notification of all listeners is not guaranteed to occur in the same thread. Access to any

data shared between the listeners should be synchronized. [1]

13.29) Each listener interface extends the java.util.EventListener. [1]

13.30) The same listener can be added to several event sources, if required. [1]

13.31) If you register more than one Listener of the same type to a component � ALL

registered listeners will be notified when an action happens. [1]

13.32) Event adapters facilitate implementing listener interfaces. When you implement an

interface you have to provide the implementation for each method specified in this
interface, also for the low-level listener interface the interface has several methods that
must be implemented even if you don�t want to handle these methods � the
java.awt.event package defines an adapter class corresponding to each low-level
listener interface; an event adapter implements stubs for all the methods of the
corresponding interface, so a listener can subclass the adapter and override only stub-
methods for handling events of interest. It makes sense to define such adapters for
low-level event listener interfaces, as only these interfaces have more than one method
in their specification. [1]
Example:
Import java.awt.*;
Import java.awt.event.*;

Public class SimpleWindowTwo extends Frame {
 Button quitButton; // The source
 QuitHandler quitHandler; // The listener

 Public SimpleWindowTwo() {
 // create the window
 super(�SimpleWindow�);

 // create button
 quitButton = new Button(�Quit�);

 // set a layout manager, and add the button to the window
 setLayout(new Layout(FlowLayout.CENTER));
 add(quitButton);

 // Create and add the listener to the button
 quitHandler = new QuitHandler(this);
 quitButton.addActionListener(quitHandler);

 // Pack the window and pop it up.
 Pack();
 SetVisible(true);
 }
 /** Create an instance of the application */
 public static void main() { new SimpleWindowTwo(); }
}

// Definition of the listener
class QuitHandler implements ActionListener, WindowListener {
 private SimpleWindowTwo application;

 public QuitHandler(SimpleWindowTwo window) {
 application = window;
 }

 // Terminate the program
 private void terminate() {
 System.out.println(�Quuiting the application�);
 Application.dispose();
 System.exit(0);
 }

 // Invoked when the user clicks the quit button
 public void actionPerformed(ActionEvent evt) {
 if (evt.getSource() == application.quitButton) {
 terminate();
 }
 }

 // Invoked when the user clicks the close-box
 public void windowClosing(WindowEvent evt) {
 terminate();
 }

 // Unused methods of the WindowListener interface.
 Public void windowOpened(WindowEvent evt) {}
 Public void windowIconified(WindowEvent evt) {}
 Public void windowDeiconified(WindowEvent evt) {}
 Public void windowDeactivated(WindowEvent evt) {}
 Public void windowClosed(WindowEvent evt) {}
 Public void windowActivated(WindowEvent evt) {}
}
Example revisited after using event adapter:
Import java.awt.*;
Import java.awt.event.*;

Public class SimpleWindowTwo extends Frame {
 /* as before */
}

// Definition of the listener
class QuitHandler extends WindowAdapter implements ActionListener {

 private SimpleWindowTwo application;

 public QuitHandler(SimpleWindowTwo window) {
 application = window;
 }

 // Terminate the program
 private void terminate() {
 System.out.println(�Quuiting the application�);
 Application.dispose();
 System.exit(0);
 }

 // Invoked when the usre clicks the quit button
 public void actionPerformed(ActionEvent evt) {
 if (evt.getSource() == application.quitButton) {
 terminate();

 }
 }

 // Invoked when the user clicks the close-box
 public void windowClosing(WindowEvent evt) {
 terminate();
 }
}

13.33) Anonymous classes provide an elegant solution for creating listeners and adding them

to event sources. [1]
Example:
Import java.awt.*;
Import java.awt.event.*;

Public class SimpleWindowThree extends Frame {
 Button quitButton; // The source

 Public SimpleWindowThree() {
 // create the window
 super(�SimpleWindowThree�);

 // create button
 quitButton = new Button(�Quit�);

 // set a layout manager, and add the button to the window
 setLayout(new Layout(FlowLayout.CENTER));
 add(quitButton);

 // Create and add the listener to the button
 quitButton.addActionListener(new ActionListener(){
 // Invoked when the usre clicks the quit button
 public void actionPerformed(ActionEvent evt) {
 if (evt.getSource() == application.quitButton) {
 terminate();
 }
 }
 });

 // Create and add the listener to the button
 addWindowListener(new WindowAdapter() {
 // Invoked when the user clicks the close-box
 public void windowClosing(WindowEvent evt) {
 terminate();
 }
 });

 // Pack th window and pop it up.
 Pack();
 SetVisible(true);
 }

 // Terminate the program
 private void terminate() {
 System.out.println(�Quuiting the application�);
 Application.dispose();
 System.exit(0);
 }

 /** Create an instance of the application */
 public static void main() { new SimpleWindowTwo(); }
}

13.34) The AWT delivers AWTEvents to a component by calling the processEvent(AWTEvent

evt) method of the component. This method is at the core of low-level event
processing. Its default implementation calls an event-specific method in the component.
If the component received an ActionEvent, the processEvent() method calls the
processActionEvent() method of the component. In other words, when the XEvent is
received by a component, it is dispatched by the processEvent() method to a
corresponding processXEvent() method of the component. [1]

13.35) If a component is customized by subclassing another component, it has the opportunity

to implement its own low-level event processing. This can be done in one of two ways:
(1) The subclass component can keep the default behavior of the processEvent()

method, but provide its own implementations of the processXEvent() methods
which override the default versions of these methods.

(2) The subclass component can override the processEvent() method and thereby
bypass the default behavior of the processXEvent() methods.

In order for either scheme to work, one additional requirment must be met. The
subclass component must explicitly enable all events of interest. This is done by calling
the enableEvents() method of the component. This method is passed a bit mask
formed from OR�ing EVENT_MASK constants defined in the java.awt.AWTEvent class
shown in the following table: [1]
Enabling EVENT_MASK Corresponding event processing method
AWTEvent.COMPONENT_EVENT_MASK ProcessComponentEvent()
AWTEvent.CONTAINER_EVENT_MASK ProcessContainerEvent()
AWTEvent.FOCUS_EVENT_MASK ProcessFocusEvent()
AWTEvent.KEY_EVENT_MASK ProcessKeyEvent()
AWTEvent.MOUSE_EVENT_MASK ProcessMouseEvent()
AWTEvent.MOUSE_MOTION_EVENT_MASK ProcessMouseMotionEvent()
AWTEvent.WINDOW_EVENT_MASK ProcessWindowEvent()
AWTEvent.ACTION_EVENT_MASK ProcessActionEvent()
AWTEvent.ADJUSTMENT_EVENT_MASK ProcessAdjustmentEvent()
AWTEvent.ITEM_EVENT_MASK ProcessItemEvent()
AWTEvent.TEXT_EVENT_MASK ProcessTextEvent()

13.36) Steps for explicit event handling can be summarized as follows: [1]

(1) Define a subclass of the component.
(2) Enable the events by making the subclass constructor call the enableEvents() method

with the appropriate bit mask formed from AWTEvent.X_EVENT_MASK constants.
(3) Choose one of the two strategies to intercept the events in the subclass:

- For each AWTEvent.X_EVENT_MASK constant, the subclass can provide an
implementation of the corresponding processXEvent() method.

- The subclass can override the processEvent() method by providing an
implementation to handle the events explicitly.

No matter which strategy is chosen, each event processing method must call the
overridden version in the superclass before returning. This ensures that any registered
listeners will also be notified.
Example: low level processing I:
Import java.awt.*;
Import java.awt.event.*;

Public class SimpleWindowFour extends Frame {
 QuitButton quitButton;
 Public SimpleWindowFour() {
 super(�SimpleWindowFour�);
 quitButton = new QuitButton(�Quit�, this);
 add(quitButton);
 enableEvents(AWTEvent.KEY_EVENT_MASK |
AWTEvent.WINDOW_EVENT_MASK);

 pack();
 setVisible(true);
 }

 // Invoked when the user clicks the close-box
 public void processWindowEvent(WindowEvent evt) {
 if (evt.getID == WindowEvent.WINDOW_CLOSING)
 terminate();
 super.processWindowEvent(evt);
 }

 // Invoked when the user types �q� or �Q�
 public void processKeyEvent(KeyEvent evt) {
 if (evt.getID() == KeyEvent.KEY_TYPED && (evt.getKeyChar() == �q�
|| evt.getKeyChar() == �Q�))
 terminate();
 super.processKeyEvent(evt);
 }

 public void terminate() {
 System.out.println(�Quiting the application�);
 dispose();
 System.exit(0);
 }

 public static void main(String args[]) {
 SimpleWindowFour window = new SimpleWindowFour();
 }
}
class QuitButton extends Button {
 private SimpleWindowFour application;

 public QuitButton(String name, SimpleWindowFour window) {
 super(name);
 application = window;
 enableEvents(AWTEvents.ACTION_EVENT_MASK |
AWTEvent.KEY_EVENT_MASK);
 }

 public void processActionEvent(ActionEvent evt) {
 if (evt.getSource() == this)
 application.terminate();
 super.processActionEvent(evt);
 }

 public void processKeyEvent(KeyEvent evt) {
 if (evt.getID() == KeyEvent.KEY_TYPED && (evt.getKeyChar() == �q�
|| evt.getKeyChar() == �Q�))
 application.terminate();
 super.processKeyEvent(evt);
 }
}
Example: low level processing II:
The main difference between I & II is that II does all the event processing in the
processEvent() method.
Import java.awt.*;
Import java.awt.event.*;

Public class SimpleWindowFive extends Frame {
 QuitButton quitButton;
 Public SimpleWindowFive() {
 super(�SimpleWindowFive�);
 quitButton = new QuitButton(�Quit�, this);

 add(quitButton);
 enableEvents(AWTEvent.KEY_EVENT_MASK |
AWTEvent.WINDOW_EVENT_MASK);
 pack();
 setVisible(true);
 }

 // Event processing
 public void processEvent() {
 // Invoked when the user clicks the close-box
 if (evt.getID() == WindowEvent.WINDOW_CLOSING)
 terminate();

 // Invoked when the user types �q� or �Q�
 if (evt.getID() == KeyEvent.KEY_TYPED &&
 (((KeyEvent) evt).getKeyChar() == �q� ||
 (((KeyEvent) evt).getKeyChar() == �Q�))
 terminate();
 super.processEvent(evt);
 }

 public void terminate() {
 System.out.println(�Quiting the application�);
 dispose();
 System.exit(0);
 }

 public static void main(String args[]) {
 SimpleWindowFour window = new SimpleWindowFive();
 }
}
class QuitButton extends Button {
 private SimpleWindowFive application;

 public QuitButton(String name, SimpleWindowFive window) {
 super(name);
 application = window;
 enableEvents(AWTEvents.ACTION_EVENT_MASK |
AWTEvent.KEY_EVENT_MASK);
 }

 public void processEvent(AWTEvent evt) {
 // Invoked when the user clicks the quit button
 if ((evt instanceof ActionEvent) && ((ActionEvent)evt).getSource()
== this)
 application.terminate();

 // Invoked when the user types �q� or �Q�
 if (evt.getID() == KeyEvent.KEY_TYPED &&
 (((KeyEvent) evt).getKeyChar() == �q� ||
 ((KeyEvent) evt).getKeyChar() == �Q�))
 application.terminate();

 super.processEvent(evt);
 }
}

Chapter 14:

Painting

14.1) The abstract class java.awt.Graphics provides a device-independent interface for
rendering graphics. An instance of the Graphics class or its subclass CANNOT be
created directly using a constructor because it is abstract. [1]

14.2) The graphics context encapsulates the following state information: [1]

(a) The target of the graphics context.
(b) The color in which drawing is done.
(c) The font in which text is rendered.
(d) The clip region that defines the area in which drawing is done.
(e) The translation origin relative to which all drawing coordinates are interpreted.
(f) The paint mode for rendering graphics.
(g) The color of the XOR paint mode toggle.

14.3) A component may need to be redrawn for a variety of reasons: its size might have

changed, it might have been covered but now has become uncovered, user ineraction
may initiate a redraw of the component. [1]

14.4) The following methods defined in the Component class are involved in drawing

components:
void repaint();
void update(Graphics g);
void paint(Graphics g);
The code for drawing the component is usually implemented in the overriding method
paint() defined by a concrete component. This method is passed an object of the
Graphics class that provides the graphics context for drawing the component. The AWT
will automatically call paint() when the size of the component has changed or the
component has been uncovered. The paint() method is seldom called directly by the
component, instead the following procedure is relied upon to change its appearance:
- The repaint() method is usually called by the application for screen updating.
- The call to the repaint() method eventually leads to invocation of the update()

method. By default, this method does the following:
(a) It clears the component�s screen-area by filling it with the current component

background color.
(b) It sets the current drawing color to the foreground color of the component.
(c) It invokes the paint() method, passing it the same Graphics object that it

received.

14.5) In the AWT, most GUI control components(button, text fields, checkboxes) are drawn

using the underlying windowing system, and therefore their graphics contexts should not
be used by an application to draw on them. In other words, an instead on the default
implementation of this method to display them on the screen. Components that lend
themselves to graphics rendering by the application are those that do not have any
default external graphical representation:

(a) Canvas class.
(b) Subclasses of the Component class that are not part of the AWT.
(c) Container class and its subclasses: Window, Frame, Dialog, Panel, Applet.

A subclass of these components can override the paint() method, and use the graphics
context passed to this method to render graphics onto the component.

14.6) A user thread (i.e. the application) usually relies on the indirect calls to the update()

method through the repaint() method to update components. However, the AWT
thread (i.e. the AWT event handler) calls the paint() method directly on a component if
the component needs refreshing (for example, when the component is resized).

14.7) NOTE: The graphics context passed to the paint() method by the AWT NEED NOT be

the same every time this method is called.

14.8) A graphics context cannot be created directly by calling a constructor, because te
Graphics class is abstract. Inside the paint() method this is not a problem, as the
method is passed such a context via a Graphics reference. In other situations, a
graphics context can be obtained in one of the following two ways: [1]
- An existing Graphics object can be used to create a new one, by invoking the

create() method in the Graphics class.
- Since every component has an associated graphics context, this can be explicitly

obtained by calling the getGraphics() method of the Component class.
NOTE:The creator of a graphics context should ensure that the dispose() method is
called to free the resources it uses when the graphics context is no longer needed.

14.9) Coordinates of a component: [1]

 (0, 0)

 (left, top)

Component

 (width-1, height-1)

14.10) The coordinates are measured in pixels and supplied as integer values to the many

drawing methods of the Graphics class. [1]

14.11) The drawing area in a component is not necessarily the same size as the component.

The size of the component is returned by the following method of the Component class:
[1]
Dimension getSize() // (width, height)
However, the size returned includes the borders (and any title-bar in the case of a
frame). The insets(i.e. size of the borders) of the component are given by the following
method of the Container class:
Insets getInsets() // (top, bottom, left, right)

14.12) The size of the drawing region in a component can be calculated as follows: [1]

Dimension size = getSize();
Insets insets = getInsets();
int drawHeight = size.height � insets.top � insets.bottom;
int drawWidth = size.width � insets.left � insets.right;

14.13) The origin of the drawing region in a component is given by (getInsets.left,

getInset.top). The method translate(int x, int y) of the Graphics class can be
used to set the translation origin of the graphics context. All coordinate arguments to
the methods of the Graphics object are then considered relative to this origin in
subsequent operations. [1]

14.14) The following methods of the Graphics class can be used to get the current color or to

set a color in the graphics context. Any change of color applies to all subsequent
operations. [1]
Color getColor();
void setColor(Color c);

14.15) There are 13 predefined colors designated by constants in the Color class: [1]

Color.black
Color.blue
Color.cyan

 top Insets

 left right

 bottom

Drawing area

Color.darkGray
Color.gray
Color.green
Color.lightGray
Color.magenta
Color.orange
Color.pink
Color.red
Color.white
Color.yellow

14.16) The Color class constructors: [1]

Color(int r, int g, int b)
Creates a color using the separate red, green, and blue(RGB) values for the color in the
range (0-255)

Color(int rgb)
Creates a color with the specified combined RGB value consisting of the red component
in bits 16-23, the green component in bits 8-15, and the blue component in bits 0-7

Color(float r, float g, float b)
Creates a color with the specified red, green, and blue(RGB) values in the range (0.0 �
1.0)

14.17) The class SystemColor provides the desktop color scheme for the current platform.

Constants are provided for properties such as the background color of the desktop
(SystemColor.desktop), background color for the controls(SystemColor.control) and
text color for menus (SystemColor.menuText). These color properties can be used to
provide a look which is consistant with that of the host platform. [1]

14.18) Text rendering in a component is done using the following methods of the Graphics

class: [1]
void drawString(String str, int x, int y);
String is drawn with the baseline of the first character at the specified coordinates,
using the current font and color.

void drawChars(Char[] data, int offset, int length, int x, int y);
Starting at the offset argument, length characters from the character array are drawn
with baseline of the first character at the specified coordinates, using the current font
and color.

void drawBytes(byte[] data, int offset, int length, int x, int y);
Starting at the offset argument, length bytes from the byte array are drawn with
baseline of the first character at the specified coordinates, using the current font and
color.

 Ascent line
 Ascent

 Baseline
 Descent Descent line

14.19) The following methods of the Graphics class can be used to get the font property or set

the font in the graphics context. Methods with the same signatures are also defined in
the Component class to obtain the current font or set a font for a component. [1]
Font getFont()
void setFont(Font f)

14.20) The Font class defines a constructor that can be used to obtain available fonts. [1]

Font(String name, int style, int size)

The following font names (called logical font names) are standard on all platforms and
are mapped to actual fonts on a particular platform:
�Serif� which is a variable pitch font with serifs.
�SansSerif� which is a variable pitch font without serifs.
�Monospaced� which is a fixed pitch font.
�Dialog� which is a font for dialogs.
�DialogInput� which is a font for dialog input.
�Symbol� which is mapped to a symbol font.

Font style can be specified using constants from the Font class:
Font.BOLD
Font.ITALIC
Font.PLAIN
(Font.BOLD | Font.ITALIC) // Both bold and italic

14.21) Font availability is platform-depenedent. The glyphs which make up a font are also

platform-dependent. [1]
boolean canDisplay(char c)
In the Font class can be used to find out if a font has a glyph for a specific character.

The GraphicsEnvironment class provides access to platform-specific information about
fonts. The local GraphicsEnvironment can be used tgo get a list of names for the
available fonts:
GraphicsEnvironment ge=GraphicsEnvironment.getLocalGraphicsEnvironment();
String[] fontNames = ge.getAvailableFontFamilyNames();

14.22) Properties of a font are accessed by using a font metrices (represented by objects of

the FontMetrices class) associated with the Font. All font measurments are in pixels.
[1]

A font metrices can be obtained in one of the following ways:
(a) A component can be used to get a font metrices for a font:

Font font12 = new Font(�Dialog�, Font.ITALIC, 12);
FontMetrices metrices2 = component.getFontMetrices(font12);

(b) A graphics context can be used to get a font metrices for a font:
FontMetrices metrices3 = graphicsContext.getFontMetrices();
FontMetrices metrices4 = graphicsContext.getFontMetrices(font18);

int getAscent()
int getDescent()
int getMaxAscent()
int getMaxDescent()

int getLeading()
Returns the standard leading value, a.k.a. interline spacing, which is the amount of
space between the descent of one line of text and the ascent of the next line.

int getHeight()
Returns the standard height of a line of text in the font associated with the metrices.
Font height is the distance between the baseline of adjacent lines of text. It is sum of
the leading + ascent + descent of the font.

int getMaxAdvance()
Returns the maximum advance of any character in this font. This is defined as the
maximum distance between one character to the next, in a line of text.

int charWidth(int ch)
int charWidth(char ch)

Returns the advance width of the specified character.

int stringWidth(String str)
Returns the advance width of the characters in the specified string.

14.23) Graphics class provides the following method for drawing lines: [1]

void drawLine(int x1, int y1, // from point
 int x2, int y2) // to point

14.24) Graphics class provides the following method for drawing outlines of rectangles, and to

fill a rectangle with the current color. For methods that draw the outline of a rectangle,
the resulting rectangle will cover an area of (width+1) x (length+1) pixels. For
methods that fill a rectangle will cover an area of width x height pixels. [1]
void drawRect(int x, int y, // top left corner
 int width, int length) // of rectangle
void fillRect(int x, int y, // top left corner
 int width, int length) // of rectangle
void drawRoundRect(int x, int y, // top left corner
 int width, int length, // of rectangle
 int arcwidth, int arclength) // horizontal & vertical
 // diameters
void fillRoundRect(int x, int y, // top left corner
 int width, int length, // of rectangle
 int arcwidth, int arclength)
void draw3DRect(int x, int y, // top left corner
 int width, int length, // of rectangle
 int arcwidth, int arclength, // horizontal & vertical
 // diameters
 boolean raised) // raised or sunk
void fill3DRect(int x, int y, // top left corner
 int width, int length, // of rectangle
 int arcwidth, int arclength, // horizontal & vertical
 // diameters
 boolean raised) // raised or sunk
void clearRect(int x, int y, // top left corner
 int width, int length) // of rectangle

14.25) Graphics class provides the following method for drawing ovals, and to fill an oval with

the current color. [1]
void drawOval(int x, int y, // top left corner
 int width, int length) // of bounding rectangle
void fillOval(int x, int y, // top left corner

 int width, int length) // of bounding rectangle

 (x, y)

 Oval
 height
 Bounding rectangle

 width

14.26) Graphics class provides the following method for drawing arcs, and to fill an oval with

the current color. The starting point of the arc is given by a starting angle, and the
ending point is given by the angle swept by the arc. Angles are measured are measured
in degrees. All positive angles are measured in a counterclockwise direction with the 0
degrees given by the three-o�clock position. Negative angles are measured in a

clockwise direction from the 0 degrees position. The arc is bounded by a rectangle. The
center of the arc coincides with the center of the bounding rectangle. [1]

 (x, y)
 arcangle
 startangle
 length 0°

 width

void drawArc(int x, int y, // top left corner
 int width, int length, // of bounding rectangle
 int startAngle,
 int arcAngle);
void fillArc(int x, int y, // top left corner
 int width, int length, // of bounding rectangle
 int startAngle,
 int arcAngle);

14.27) A polygon is a closed sequence of line segments. Given a sequence of points (called

vertices), line segments connect one vertex to the next in the sequence, finishing with
the last vertex being connected with the first one. The Polygon class has the following
constructors: [1]
Polygon(int[] xpoints, int[] ypoints, int npoints);

14.28) Graphics class provides the following method for drawing polygons, and to fill a

polygons with the current color. [1]
void drawPolygon(int[] xPoints, int[] yPoints, int nPoints);
void drawPolygon(Polygon p);
void fillPolygon(int[] xPoints, int[] yPoints, int nPoints);
void fillPolygon(Polygon p);

14.29) The clip region of a graphics context defines the area in which all drawing will be done.

In other words, the clip region defines the actual drawing area used for rendering
operations. This region can be all or part of the associated component. Rendering
operations have no effect outside the clip region. Only pixels that lie within the clip
region can be modified. The Graphics class defines the following methods for the clip
region: [1]
Rectangle getClipBounds()
Shape getClip()
void setClip(int x, int y, int width, int height)
void setClip(Shape clip)

14.30) The default paint mode is to overwrite pixels in the drawing region. The AWT offers

another rendering mode called the XOR paint mode. The following methods of the
Graphics class can be used to switch between overwrite and XOR paint modes: [1]

void setPaintMode()
Sets the mode to overwrite paint mode. All subsequent rendering operations will
overwrite the destination with the current color.

void setXORMode(Color c1)
Sets the mode to XOR paint mode, which alternates pixels between the current color
and a new specified XOR alternation color.

14.31) The current toolkit can be used to read the graphics file (GIF or JPEG formates) into an

Image object: [1]
Toolkit currentTK = Toolkit.getDefaultToolkit();

Image image1 = currentTK.getImage(�Cover.gif�);

For a graphics file on the net, a URL must be supplied:
URL url = new URL(�http://www.example.com/Cover.gif�);
Image image2 = currentTK.getImage(url);

14.32) The Applet class also provides getImage() methods for reading graphics files:

Image getImage(URL url);
Image getImage(URL url, String name);
The url argument must specify an absolute URL. The name argument is the name of the
file, interpreted relative to the URL. These methods returns immediately.
The Graphics class defines a variety of drawImage() methods which can scale and fit
the image. The simplest form of the drawImage() method is shown here:
boolean drawImage(Image img,
 int x, int y,
 ImageObserver observer)

Chapter 15:

Files & Streams

15.1) It is worth a while to review how Java represents text before looking to file I/O: [1][3]
Java uses two kinds of text representation:

- Unicode for internal representation of characters and strings.
- UTF for input and output.

Unicode uses 16 bits to represent each character. If the high-order 9 bits all zeros,
then the encoding is simply standard ASCII, with the low-order byte containing the
character representation. Otherwise, the bits represent a character that is not
represeneted in 7-bit ASCII. Java�s char type uses Unicode encoding, and the String
class contains a collection of Java chars. It is sufficient to encode most alphapets, but
pictographic Asian languages present a problem. Standards committees have developed
compromises to allow limited but useful subsets of Chinese, Japanese, and Korean to be
represented in Unicode, but it has become clear that an ideal global text representation
scheme must use more than 16 bits per character.
The answer is UTF. The abbreviation stands for �UCS Transformation Format�, and the
UCS stands for �Universal Character Set�. It uses as many bits for the larger Asian
alphapets. Since every character can be represented, UTF is a truly global encoding
scheme.
A character encoding is a mapping between a character set and a range of binary
numbers. Every Java platform has a default character encoding, which is used to
interpret between internal Unicode and external bytes. When an I/O operation is
performed in Java, the system needs to know which character encoding to use.
NOT all Unicode characters can be represented in other encoding schemes, in that case
the '?' character is usually used to denote any such character in the resulting ouput,
during translation from Unicode.
The raw 16-bit Unicode is not particularly space effiecient for storing characters derived
from the Latin alphabet, because the majority of the characters can be represented by
one byte (same as ASCII), making the higher byte in the 16-bit Unicode superfluous.
For this reason, Unicode characters are usually encoded externally, using the UTF8
encoding which has a multi-byte encoding format. It represents ASCII characters as
one-byte characters but uses multiple bytes for others. The readers and writers can
correctly and efficiently translate between UTF8 and Unicode.

15.2) File class is not meant for handling the contents of files, it represent the name of a file
or directory that might exist on the host machine�s file system. [1] [3]

15.3) The pathname for a file or a directory is specified using the naming conventions of the

host system. However, the File class defines platform-dependent constants that can be
used to handle file and directory names in a platform-independent way: [1]
public static final char separatorChar

The system-dependent default name-separator character. This field is initialized to
contain the first character of the value of the system property file.separator. On
UNIX systems the value of this field is '/'; on Win32 systems it is '\'.

public static final String separator
The system-dependent default name-separator character, represented as a String
for convenience. This string contains a single character, namely separatorChar.

public static final char pathSeparatorChar
The system-dependent path-separator character. This field is initialized to contain
the first character of the value of the system property path.separator. This
character is used to separate filenames in a sequence of files given as a path list. On
UNIX systems, this character is ':'; on Win32 systems it is ';'.

public static final String pathSeparator
The system-dependent path-separator character, represented as a String for
convenience. This string contains a single character, namely pathSeparatorChar.

15.4) The File class: [2] [3]
Category Methods Example & declaration

File(String pathname) The pathname (of a file or a
directory) can be an absolute
pathname or pathname relative to
the current directory. An empty
string as argument results in an
abstract pathname for the current
directory.

File(String directoryPathname,
String filename)

Creates a File object whose
pathname is as follows:
directoryPathname + separator +
filename

Constructors

File(File directory, String
filename)

If the directory argument is null,
the resulting File object represents
a file in the current directory. If not
null, it creates a File object whose
pathname is as follows: pathname of
the directory File Object +
separator + filename

public boolean exists() Tests whether the file or directory
denoted by this abstract pathname
exists.

public String
getAbsolutePath()

Returns the absolute pathname
string of this abstract pathname.

public String getPath() Returns the absolute or relative
pathname of the file represented by
the File object.

public String
getCanonicalPath()

Returns the name of the canonical
path of the file or directory. This is
similar to getAbsolutePath(), but
the symbols . and .. are resolved.

public String getParent() Returns the name of the directory
that contains the File Object.

Navigation

public boolean isAbsolute() Tests whether this abstract
pathname is absolute. The definition
of absolute pathname is system
dependent. On UNIX systems, a
pathname is absolute if its prefix is
"/". On Win32 systems, a pathname
is absolute if its prefix is a drive
specifier followed by "\\", or if its
prefix is "\\".

public boolean canRead() Tests whether the application can
read the file denoted by this abstract
pathname.

public boolean canWrite() Tests whether the application can
modify to the file denoted by this
abstract pathname.

public long lastModified() Returns the time that the file
denoted by this abstract pathname
was last modified.

public long length() Returns the length of the file denoted
by this abstract pathname.

Properties

public boolean
equals(Object obj)

Returns true if the comparing the
pathnames of the File objects is
identical.

public boolean isDirectory() Tests whether the file denoted by
this abstract pathname is a directory.

public boolean isFile() Tests whether the file denoted by
this abstract pathname is a normal
file.

String[] list() Returns an array of strings naming
the files and directories in the
directory denoted by this abstract
pathname.

String[] list(FilenameFilter
filter)

Returns an array of strings naming
the files and directories in the
directory denoted by this abstract
pathname that satisfy the specified
filter.

File[] listFiles() Returns an array of abstract
pathnames denoting the files in the
directory denoted by this abstract
pathname.

File[]
listFiles(FilenameFilter
filter)

Returns an array of abstract
pathnames denoting the files and
directories in the directory denoted
by this abstract pathname that
satisfy the specified filter.

File[] listFiles(FileFilter
filter)

Returns an array of abstract
pathnames denoting the files and
directories in the directory denoted
by this abstract pathname that
satisfy the specified filter.

Listing

A filter is an object of a class that implements either of these two
interfaces:
interface FilenameFilter {
 boolean accept(File currentDirectory, String entryName);
}
interface FileFilter {
 boolean accept(File pathname);
}
public boolean createNewFile() Atomically creates a new, empty file

named by this abstract pathname if
and only if a file with this name does
not yet exist. The check for the
existence of the file and the creation
of the file if it does not exist are a
single operation that is atomic with
respect to all other filesystem
activities that might affect the file.

public boolean
renameTo(File dest)

Renames the file denoted by this
abstract pathname.

public boolean delete() Deletes the file or directory denoted
by this abstract pathname. If this
pathname denotes a directory, then
the directory must be empty in order
to be deleted.

Manipulating
files &
directories

public boolean mkdir() Creates the directory named by this
abstract pathname.

 public boolean mkdirs() Creates the directory named by this
abstract pathname, including any
necessary but nonexistent parent
directories. Note that if this
operation fails it may have
succeeded in creating some of the
necessary parent directories.

15.5) Difference between: [1]

String getPath()
String getAbsolutePath()
String getCanonicalPath()

If the File object represented the relative pathname'..\book\chapter1' and the current
directory had the absolute pathname 'c:\documents' � they will return respictively

- �\..\book\chapter1�
- �c:\documents\..\book\chapter1�
- �c:\book\chapter1�

15.6) Java�s general I/O classes provide this approach for I/O approach: [3] [I made the

graph, any mistake please report]
- A low level output stream recieves bytes and writes bytes to an output device.
- A high level filter output stream receives general-format data, such as primitive,

and write bytes to a low-level stream or to another filter output stream.

General data bytes bytes

 Chain of high level stream low level stream

15.7) Byte Stream Inheritance hierarchies: [1]

DataInput
<<interface>>

ObjectInput
<<interface>>

InputStream
{abstract}

FilterInputStreamObjectInputStream FileInputStream

DataInputStream BufferedInputStream

DataOutput
<<interface>>

ObjectOutput
<<interface>>

OutputStream
{abstract}

FilterOutputStreamObjectOutputStream FileOutputStream

DataOutputStream PrintStreamBufferedOutputStream

I/O

15.8) The abstract classes InputStream and OutputStream are the root of the inheritance

hierarchies for handling the reading and writing of bytes. [1]

15.9) Methods for InputStream and OutputStream classes:

Methods in InputStream Methods in OutputStream
int read() throws IOException void write(int b) throws IOException
int read(byte[] b) throws IOException void write(byte[] b) throws

IOException
int read(byte[] b, int off, int len)
throws IOException

void write(byte[] b, int off, int
len) throws IOException

Note: that int read() method read a byte, but returns an int value, the byte resides
in the eight least significant bits of the unit, while the remaining bits in the int are
zerod out. It returns the value -1 when the end of stream is reached. The void
write(int b) method takes an int as argument, but truncates it down to the
eight least significant bits before writing it out as a byte. [1]

15.10) Closing a stream automatically flushes the stream, meaning that any data in its internal

buffer is written out, and it can be manually flushed using void flush() method. [1]

15.11) Read & Write operations on streams are synchronous (blocking) operation, i.e. a call to

read or write method does not return before a byte has been read or written. [1]

15.12) Input Streams: [1]

ByteArrayInputStream Data is read from a byte array that must be specified.
FileInputStream Data is read as bytes from a file. The file acting as the input

stream can be specified by a File object, a FileDescriptor or a
String file name.

FilterInputStream Superclass of all input stream filters. An input filter MUST be
chained to an underlying input stream.

BufferedInputStream A filter that buffers the bytes read from an underlying input
stream. The underlying input stream must be specified, and an
optional buffer size can be included.

DataInputStream A filter that allows the binary representation of Java primitive
values to be read from an underlying input stream. The
underlying input stream must be specified.

PushbackInputStream A filter that allows bytes to be �unread� from an underlying input
stream. The number of bytes to be unread can optionally be
specified.

ObjectInputStream Allows binary representation of Java objects and Java primitive
values to be read from a specified input stream.

PipedInputStream Reads bytes from a PipedOutputStream to which it must be
connected. The PipedOutputStream can optionally be specified
when creating the PipedInputStream.

SequenceInputStream Allows bytes to be read sequentially from two or more input
streams consecutively. This should be regarded as concatenating
the contents of several input streams into a single continuous
input stream.

15.13) Output Streams: [1]
ByteArrayOutputStream Data is written from a byte array. The size of the byte array

created can be specified.
FileOutputStream Data is written as bytes from a file. The file acting as the output

stream can be specified by a File object, a FileDescriptor or a
String file name.

FilterOutputStream Superclass of all output stream filters. An output filter MUST be
chained to an underlying output stream.

BufferedOutputStream A filter that buffers the bytes written to an underlying output
stream. The underlying output stream must be specified, and an
optional buffer size can be included.

DataOutputStream A filter that allows the binary representation of Java primitive
values to be written to an underlying output stream. The
underlying output stream must be specified.

ObjectOutputStream Allows binary representation of Java objects and Java primitive
values to be written to a specified output stream.

PipedOutputStream Writes bytes from a PipedInputStream to which it must be
connected. The PipedInputStream can optionally be specified
when creating the PipedOutputStream.

15.14) FileInputStream, FileOutputStream classes define byte I/O streams that are

connected to files, data can only be read or written as a sequence of bytes. [1]

FileInputStream(String name) throws FileNotFoundException
FileInputStream(File file) throws FileNotFoundException
FileInputStream(FileDescriptor fdObj) throws FileNotFoundException

If the file does not exist, a FileNotFoundException is thrown. If it exists, it is set to be
read from the beginning. A SecurityException is thrown if the file does not have read
access.

FileOutputStream(String name) throws FileNotFoundException
FileOutputStream(String name, boolean append) throws FileNotFoundException
FileOutputStream(File file) throws FileNotFoundException
FileOutputStream(FileDescriptor fdObj) throws FileNotFoundException

If the file does not exist, it is created. If it exists, its contens are reset, unless the
appropriate constructor is used to indicate that output should be appended to the file. A
SecurityException is thrown if the file does not have write access or it cannot be
created.

15.15) DataInput and DataOutput interfaces: [1]

Type Methods in DataInput Methods in DataOutput
Boolean readBoolean() writeBoolean(boolean v)
Char readChar() writeChar(int v)
Byte readByte() writeByte(int v)
Short readShort() writeShort(int v)
Int readInt() writeInt(int v)
Long readLong() writeLong(long v)
Float readFloat() writeFloat(float v)
Double readDouble() writeDouble(double v)
String readLine() writeLine(String s)
String readUTF() writeUTF(String s)

15.16) It is all very well to read bytes from input devices and write bytes to output devices, if

bytes are the unit of information you are interested in. However, more often than not
the bytes to be read or written constitute higher-level information such as ints or
strings. The most common of high-level streams extending the super-classes are
FilterInputStream and FilterOutputStream. [3]

15.17) Stream Chaining: [1]

 Bytes Bytes

 File

 Object of class Object of class
 FileOuputStream FileInputStream

 Object of class Object of class
 DataOutputStream DataInputStream

15.18) Buffering Byte Streams: [1]

The filter classes BufferedInputStream and BufferedOutputStream implement
buffering of bytes for input and output streams, respectively. Data is read and written
in blocks of bytes, rather than a single byte at a time. Buffering can enhance
performance significantly. These filter classes only provide methods for reading and
writing bytes. A buffering filter must be chained to an underlying stream.

 Bytes Bytes
 File

 Object of class Object of class
 FileOuputStream FileInputStream

 Object of class Object of class
 BufferedOutputStream BufferedInputStream

 Object of class Object of class
 DataOutputStream DataInputStream

15.19) The table below shows the correspondace between byte ouput and input streams, note

that not all classes have a correspondance counterpart.[1]
OutputStreams InputStreams
ByteArrayOutputStream ByteArrayInputStream
FileOutputStream FileInputStream
FilterOutputStream FilterInputStream
BufferedOutputStream BufferedInputStream
DataOutputStream DataInputStream
No counterpart PushbackInputStream
ObjectOutputStream ObjectInputStream
PipedOutputStream PipedInputStream
No counterpart SequenceInputStream

15.20) Character Stream inheritance hierarchies: [1]

15.21) Readers: [1]

BufferedReader A reader that buffers the characters read from an underlying reader.
The underlying reader must be specified, and an optional buffer size
can be given.

LineNumberReader A buffered reader that reads characters from an underlying reader
while keeping track of the number of lines read. The underlying reader
must be specified, and an optional buffer size can be given.

CharArrayReader Characters are read from a character array that must be specified.
FilterReader Abstract superclass of all character input stream filters. A

FilterReader must be chained to an underlying reader, which must
be specified.

PushbackReader A filter that allows characters to be �unread� from a character input
stream. A PushbackReader must be chained to an underlying reader,
which must be specified. The number of characters to be unread can
optionally be specified.

InputStreamReader Characters are read from a byte input stream, which must be
specified. The default character encoding is used if no character
encoding is explicitly specified.

FileReader Reads characters from a file using the default character encoding. The
file can be specified by a File object, a FileDescriptor, or a String
file name. It automatically creates a FileInputStream for the file.

PipedReader Reads characters from a PipedWriter to which it must be connected.
The PipedWriter can optionally be specified when creating the
PipedReader.

StringReader Characters are read from a String, which must be specified.

Reader
{abstract}

BufferedReader FilterReader InputStreamReader

FileReader

Writer
{abstract}

BufferedWriter FilterWriter OutputStreamWriter

FileWriter

PrintWriter

15.22) Writers: [1]
BufferedWriter A writer that buffers the characters before writing them to an

underlying writing. The underlying writer must be specified, and an
optional buffer size can be given.

CharArrayWriter Characters are written to a character array that grows dynamically.
The size of the character array initially created can be specified.

FilterWriter Abstract superclass of all character input stream filters. A
FilterWriter must be chained to an underlying writer, which must
be specified.

OutputStreamWriter Characters are written to a byte output stream, which must be
specified. The default character encoding is used if no explicit
character encoding is specified.

FileWriter Writes characters to a file, using the default character encoding. The
file can be specified by a File object, a FileDescriptor, or a
String file name. It automatically creates a FileOutputStream for
the file.

PipedWriter Writes characters to a PipedReader, to which it must be connected.
The PipedReader can optionally be specified when creating the
PipedWriter.

PrintWriter A filter that allows textual representations of Java objects and Java
primitive values to be written to an underlying output stream or
writer. The underlying output stream or writer must be specified.

StringWriter Characters are written to a StringBuffer. The initial size of the
StringBuffer created can be specified.

15.23) Methods for Reader and Writer classes:

Methods in Reader Methods in Writer
int read() throws IOException void write(int c) throws IOException
int read(char cbuf[]) throws

IOException
void write(char[] cbuf) throws

IOException
int read(char cbuf[], int off, int

len) throws IOException
void write(String str) throws

IOException
 void write(char[] cbuf, int off, int

len) throws IOException
 void write(String str, int off, int

len) throws IOException
long skip(long n) throws IOException void close() throws IOException
 void flush() throws IOException

15.24) PrintWriter class:

Constructors:
PrintWriter(Writer out)
PrintWriter(Writer out, boolean autoFlush)
PrintWriter(OutputStream out)
PrintWriter(OutputStream out, boolean autoFlush)

print() methods println() methods
print(boolean b) println(boolean b)
print(char c) println(char c)
print(int i) println(int i)
print(long l) println(long l)
print(float f) println(float f)
print(double d) println(double d)
print(char[] s) println(char[] s)
print(String s) println(String s)
print(Object obj) println(Object obj)

The println() methods write the text representation of their argument to the
underlying stream, and then append a line-separator. They use the correct platform-
dependentline-separator.
Example:
On Unix platforms the line separator is '\n'(linefeed), while on windows it is '\r\n'
(carriage return linefeed) and on Macintosh it is '\r' (Carriage return).

15.25) The print() methods does not throw any IOException, instead the checkError()

method of the PrintWriter class MUST be called to check for errors. [1]

15.26) When writing text to a file using the default character encoding, the following three

procedures for setting up a PrintWriter are equivalent. [1]

 characters
 text file

 object of class
 FileOutputStream

 object of class
 OutputStreamWriter

 object of class
 PrintWriter

 characters
 text file

 object of class
 FileOutputStream

 object of class
 PrintWriter

 characters
 text file

 object of class
 FileWriter

 object of class
 PrintWriter

15.27) When reading characters from a file using default character encoding, the following two
procedures for setting up an InputStreamReader are equivalent. [1]

 characters
 text file

 Object of class
 FileInputStream
 Object of class
 InputStreamReader

 characters
 text file

 object of class
 FileReader
15.28) Using a buffered writers: [1]

For using a specified encoding:

 characters

 text file

 Object of class
 FileOutputStream

 Object of class
 OutputStreamWriter

 Object of class
 BufferedWriter
 Object of class
 PrintWriter

For using the default character encoding:

 characters

 text file

 Object of class
 FileWriter

 Object of class
 BufferedWriter

 Object of class
 PrintWriter

15.29) BufferedWriter class provides the method newLine() for writing the platform

dependent line separator. [1]

15.30) Standard output stream (usually the screen) is presented by PrintStream object

System.out
Standard input stream (usually the keyboard) is represented by the InputStream object
System.in
i.e. it is the I/P stream.
The standard error stream (also usually the screen) is repressented by the System.err
which is another object of the PrintStream class

15.31) Comparison of character writers and readers: [1]

Writers Readers
BufferedWriter BufferedReader
No counterpart LineNumberReader
CharArrayWriter CharArrayReader
FileWriter FilterReader
No counterpart PushbackReader
OutputStreamWriter InputStreamReader
FileWriter FileReader
PipedWriter PipedReader
PrintWriter No counterpart
StringWriter StringReader

15.32) Comparison between byte streams and character streams: [1]

Byte Streams Character Streams
OutputStream Writer
InputStream Reader
ByteArrayOutputStream CharArrayWriter
ByteArrayInputStream CharArrayReader
No counterpart OutputStreamWriter
No counterpart InputStreamWriter
FileOutputStream FileWriter
FileInputStream FileReader
FilterOutputStream FilterWriter
FilterInputStream FilterReader
BufferedOutputStream BufferedWriter
BufferedInputStream BufferedReader
PrintStream PrintWriter
DataOutputStream No counterpart
DataInputStream No counterpart
ObjectOutputStream No counterpart
ObjectInputStream No counterpart
PipedOutputStream PipedWriter
PipedInputStream PipedReader
No counterpart StringWriter
No counterpart StringReader
No counterpart LineNumberReader
PushbackInput PushbackReader
SequenceInputStream No counterpart

15.33) RandomAccessFile class implements direct access for files, it implements both the

DataInput and DataOutput Interfaces and inherits directly from the Object class. It
presents a model of files that is incompatible with the stream/reader/writer model
described previously, you can seek to a desired position within a file, and then read or
write a desired amount of data. [1] [3]

15.34) The mode argument in the constructor must be either 'r' or 'rw' otherwise

IllegalArgumentException is thrown. [1]
RandomAccessFile(String name, String mode) throws IOException
RandomAccessFile(File file, String mode) throws IOException

15.35) Opening a file for writing does not reset the contents of the file. An IOException is

thrown if an I/O error occurs, must notably when the mode is �r� and the file does not
exist, however, if the mode is �rw� and the file does not exist, a new emptyfile is
created regardless ofthe mode, if the file does exist, its file pointer is set to the
begining of the file. A SecurityException is thrown if the application does not have the
neccessary access rights. [1]

15.36) The RandomAccessFile class: [1] [3]

Category Methods Example & declaration
public long getFilePointer() Returns the current position within

the file, in bytes. Subsequent
reading and writing will take place
starting at this position.

public void seek(long pos) Sets the file-pointer offset, measured
from the BEGINNING of this file, at
which the next read or write occurs.

Navigating

public long length() Returns the length of this file.
Handling public void close() Closes this random access file

stream and releases any system
resources associated with the
stream.

15.37) It implements all methods in table mentioned in tip (15.15), because it implements the

two interface DataInput, DataOutput. Also support more common methods that
support byte reading and writing as: [2] [3]

Category Methods Example & declaration
public int read()throws
IOException

Reads a byte of data from this file.
The byte is returned as an integer in
the range 0 to 255 (0x00-0x0ff), or
�1 if the end of the file is reached.
This method blocks if no input is yet
available.

public int read(byte[] b)
throws IOException

Reads up to b.length bytes of data
from this file into an array of bytes.
or �1 if the end of the file I reached.
This method blocks until at least one
byte of input is available.

Reading

public int read(byte[] b,
int off, int len) throws
IOException

Reads up to len bytes of data from
this file into an array of bytes. This
method blocks until at least one byte
of input is available.

public void write(int b)
throws IOException

Writes the specified byte to this file.
The write starts at the current file
pointer.

public void write(byte[] b)
throws IOException

Writes b.length bytes from the
specified byte array to this file,
starting at the current file pointer.

Writing

public void write(byte[] b,
int off, int len) throws
IOException

Writes len bytes from the specified
byte array starting at offset off to
this file.

15.38) Positioning the file pointer for direct file access: [1]

 seek(0)
 seek(current - d)

 -d bytes

 current = getFilePointer()

 +d bytes

 seek(current + d)

 seek(length() -1)

15.39) Object serialization allows an object to be transformed into a sequence of bytes that

can be re-created into the original object. [1]

References:

[1] �A Programmer�s Guide to Java Certification� A Comprehensive Primer

Khalid A. Mughal
Rolf W.Rasmussen
ISBN: 0-201-59614-8
Publisher: Addison-Wesley

[2] �Java Platform 1.2 documentation�

http://java.sun.com/docs/index.html

[3] �The complete Java 2 Certification study guide�
 Simon Roberts
 Philip Heller
 Michael Ernest
 ISBN: 0-7821-2700-2
 Publisher: Sybex

[4] http://groups.yahoo.com/group/jcertification/

[5] http://www.absolutejava.com

[6] http://www.javaranch.com/campfire/StoryBits.jsp

[7] �The Java Handbook�
 Patrick Naughton

[8] �Exam cram, Java 2 Exam 310-025�
 Bill Brogden
 ISBN:1-57610-291-2
 Publisher:Coriolis

[9] http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html

[10] http://members.spree.com/education/javachina/Cert/FAQ_SCJP2.htm

[11] Veena Iyer Notes
 Located in: http://groups.yahoo.com/group/jcertification/files/VeenaNotes.pdf

[12] Velmurugan Notes

mail to or inquiries: velmurugan_p@yahoo.com

[13] http://www.go4java.20m.com/mock1.htm

