
Enterprise JavaBeans Fundamentals

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Tutorial tips 2

2. EJB technology overview 4

3. The EJB specification 7

4. Entity beans 16

5. Session beans 30

6. Deploying EJB technology 37

7. Enterprise JavaBeans clients 39

8. Exercises 40

9. Summary 60

Enterprise JavaBeans Fundamentals Page 1

Section 1. Tutorial tips

Should I take this tutorial?
This tutorial provides an introduction to Enterprise JavaBeans technology with particular
attention to the role of Enterprise JavaBean components in distributed-computing scenarios,
the architecture, the extension APIs, and the fundamentals of working with EJB technologies.

Concepts

After completing this tutorial, you will understand:

* The overall architecture
* The roles of clients and server
* The life cycles of session and entity beans

Objectives

By the end of this tutorial you will be able to:

* Build EJB technology-based distributed systems
* Create entity beans
* Create session beans
* Deploy solutions in a server
* Create standalone enterprise bean clients
* Use entity beans from within session beans

copyright 1996-2000 Magelang Institute dba jGuru

Tutorial navigation
Navigating through the tutorial is easy:

* Use the Next, Next Section, and Previous buttons to move forward and backward
through the tutorial.

* Use the Main menu button to return to the tutorial menu. Within a section, use the
Section menu to see the list of topics in that section.

* If you'd like to tell us what you think, or if you have a question for the author about the
content of the tutorial, use the Feedback button.

Contact
jGuru has been dedicated to promoting the growth of the Java technology community
through evangelism, education, and software since 1995. You can find out more about their
activities, including their huge collection of FAQs at jGuru.com . To send feedback to jGuru
about this course, send mail to producer@jguru.com .

Course Authors:
* Richard Monson-Haefel

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 2

http://www.jguru.com
http://www.jguru.com
mailto:producer@jguru.com
http://www.jguru.com/jguru/guru/view.jsp?EID=16
http://www.jguru.com/jguru/guru/view.jsp?EID=16

* Tim Rohaly

For information about the authors of this course, click on the links above to see their Bio
pages at jGuru.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 3

http://www.jguru.com/jguru/guru/view.jsp?EID=10
http://www.jguru.com/jguru/guru/view.jsp?EID=10

Section 2. EJB technology overview

Introduction
The Enterprise JavaBeans (EJB) 1.1 specification defines an architecture for the
development and deployment of transactional, distributed object applications-based,
server-side software components. Organizations can build their own components or
purchase components from third-party vendors. These server-side components, called
enterprise beans, are distributed objects that are hosted in Enterprise JavaBean containers
and provide remote services for clients distributed throughout the network.

Two-tier and three-tier environments
In two-tier client-server environments, programmers write applications that are closely tied
to vendor-specific software. Typically, two-tier applications access database services or
transaction services directly from the client. Such applications are sometimes called fat
clients because the application logic resides on the client, making the clients large and
complex. This is depicted by the following diagram:

Three-tier client-server applications employ an intermediary, or middle-tier, application
server, which operates between client applications and the back-end databases. The middle
tier houses the business logic of the system and coordinates the interaction of the
presentation on the client with the back-end databases.

There are two fundamental motivations for using a three-tier architecture over a two-tier
model:

* Improved scalability, availability, and performance
* Improved flexibility and extensibility of business systems

Two-tier systems perform well by leveraging the processing power of the client, but the
dedicated nature of many clients to a single back-end resource, like a database, produces a
bottleneck that inhibits scalability, availability, and performance as client populations grow
large. Three-tier systems attempt to mitigate this bottleneck by managing back-end
resources more effectively. This is accomplished through resource management techniques
like pooling and clustering of middle-tier servers. Pooling makes three-tier systems more
effective by allowing many clients to share scarce resources like database connections,
which reduces the workload on back-end servers. Clustering makes three-tier systems

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 4

more available and scalable because multiple servers and resources can support fail-over
and balance the loads of a growing client population.

Three-tier systems are more flexible and extensible than their two-tier counterparts because
the business logic and services, such as security and transactions, reside on the middle-tier
and are largely hidden from the client applications. If properly implemented, as is the case
with Enterprise JavaBeans, services are applied automatically to client requests and are
therefore invisible. Because services are not visible to the client, changes to services are
also invisible. Changes and enhancements to business logic on the middle tier can also be
hidden from client applications if implemented correctly.

Additionally, when clients and middleware components are implemented in the Java
programming language, there is a tremendous potential for portability. The class files that
implement the clients as well as the application servers can be relocated quite easily to the
hosts that are currently most appropriate.

Over the last two to three years, several vendors have released Java-based three-tier
application servers, all of which are capable of interacting with and managing back-end
server operations. Even though these middleware products support distributed architectures
that are a very significant advance over two-tier designs (and over pre-Java application
servers), their fundamental limitation is that their programming models tend to be vendor
specific. This means that an organization must invest heavily in a vendor's model and that
systems are not portable, leading to vendor lock-in.

As the object-oriented programming paradigm has grown in popularity, distributed-object
systems have thrived. Several distributed-object technologies now exist. The most popular
are CORBA, created by the Object Management Group , Java RMI (JRMP) from Sun
Microsystems, and DCOM and MTS (a.k.a. COM+) from Microsoft. Each has its strengths
and weaknesses. Enterprise JavaBeans from Sun Microsystems is the most recent addition
to this mix and in some regards, it's both a competitor and a partner in these technologies.

CORBA (Common Object Request Broker Architecture) went a long way toward addressing
vendor lock-in issues in three-tier computing as did other open standards like LDAP.
Unfortunately, while CORBA has revolutionized distributed computing, the programming
model proved too complex and the vendor adherence to the specification unbalanced.
CORBA has advanced distributed computing, but has proven too difficult to implement and
less portable than expected.

Enterprise JavaBeans (EJB) is Sun Microsystems' solution to the portability and complexity
of CORBA. EJB introduces a much simpler programming model than CORBA, allowing
developers to create portable distributed components called enterprise beans. The EJB
programming model allows developers to create secure, transactional, and persistent
business objects (enterprise beans) using a very simple programming model and declarative
attributes. Unlike CORBA, facilities such as access control (authorization security) and
transaction management are extremely simple to program. Where CORBA requires the use
of complex APIs to utilize these services, EJB applies these services to the enterprise bean
automatically according to declarations made in a kind of property file called a deployment
descriptor. This model ensures that bean developers can focus on writing business logic
while the container manages the more complex but necessary operations automatically.

Portability in EJB works because the EJB specification mandates a well-defined set of
contracts between the EJB container (the vendor's server) and the EJB component (the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 5

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

business object). These contracts or rules state exactly what services a container must make
available to an enterprise bean and what APIs and declarative attributes the bean developer
needs to create an enterprise bean. The life cycle of an enterprise bean is specified in detail,
so the vendor knows how to manage the bean at run time and the bean developer knows
exactly what an enterprise bean can do at any moment in its existence.

Enterprise JavaBeans simplifies the development, deployment, and access to distributed
objects. The developer of an EJB distributed object, an enterprise bean, simply implements
the object according to the conventions and protocol established for Enterprise JavaBeans.
EJB-capable application servers may, and do, use any distributed network protocol including
the native Java RMI protocol (JRMP), proprietary protocols, or CORBA's network protocol
(IIOP). Regardless of the underlying network protocol used in a particular product, EJB uses
the same programming API and semantics to access distributed objects as Java RMI-IIOP.
The details of the protocol are hidden from the application and bean developer; the
mechanics of locating and using distributed beans are the same for all vendors.

Note: An enterprise bean is not the same as a JavaBean. A JavaBean is developed using
the java.beans package, which is part of the Java 2 Standard Edition. JavaBeans are
components that run on one machine, within a single address space. JavaBeans are
process components. An enterprise bean is developed using the javax.ejb package, a
standard JDK extension, which is a part of the Java 2 Enterprise Edition. Enterprise beans
are components that run on multiple machines, across several address spaces. Enterprise
beans are thus interprocess components. JavaBeans are typically used as GUI widgets,
while enterprise beans are used as distributed business objects.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 6

Section 3. The EJB specification

Introduction
The Enterprise JavaBeans specification defines an architecture for a transactional,
distributed object system based on components. The specification mandates a programming
model, that is, conventions or protocols and a set of classes and interfaces that make up the
EJB API. The EJB programming model provides bean developers and EJB server vendors
with a set of contracts that defines a common platform for development. The goal of these
contracts is to ensure portability across vendors while supporting a rich set of functionality.

The EBJ container
Enterprise beans are software components that run in a special environment called an EJB
container. The container hosts and manages an enterprise bean in the same manner that the
Java Web server hosts a servlet or an HTML browser hosts a Java applet. An enterprise
bean cannot function outside of an EJB container. The EJB container manages every aspect
of an enterprise bean at run time including remote access to the bean, security, persistence,
transactions, concurrency, and access to and pooling of resources.

The container isolates the enterprise bean from direct access by client applications. When a
client application invokes a remote method on an enterprise bean, the container first
intercepts the invocation to ensure persistence, transactions, and security are applied
properly to every operation a client performs on the bean. The container manages security,
transactions, and persistence automatically for the bean, so the bean developer doesn't have
to write this type of logic into the bean code itself. The enterprise bean developer can focus
on encapsulating business rules, while the container takes care of everything else.

Containers will manage many beans simultaneously in the same fashion that the Java
WebServer manages many servlets. To reduce memory consumption and processing,
containers pool resources and manage the life cycles of all the beans very carefully. When a
bean is not being used, a container will place it in a pool to be reused by another client, or
possibly evict it from memory and only bring it back when it's needed. Because client
applications don't have direct access to the beans -- the container lies between the client
and bean -- the client application is completely unaware of the container's resource

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 7

management activities. A bean that is not in use, for example, might be evicted from memory
on the server, while its remote reference on the client remains intact. When the client invokes
a method on the remote reference, the container simply re-incarnates the bean to service
the request. The client application is unaware of the entire process.

An enterprise bean depends on the container for everything it needs. If an enterprise bean
needs to access a JDBC connection or another enterprise bean, it does so through the
container; if an enterprise bean needs to access the identity of its caller, obtain a reference to
itself, or access properties it does so through the container. The enterprise bean interacts
with its container through one of three mechanisms: callback methods, the EJBContext
interface, or JNDI.

* Callback Methods: Every bean implements a subtype of the EnterpriseBean
interface which defines several methods, called callback methods. Each callback
method alerts the bean of a different event in its lifecycle and the container will invoke
these methods to notify the bean when it's about to pool the bean, persist its state to the
database, end a transaction, remove the bean from memory, and so on. The callback
methods give the bean a chance to do some housework immediately before or after
some event. Callback methods are discussed in more detail in Section 4.

* EJBContext: Every bean obtains an EJBContext object, which is a reference directly to
the container. The EJBContext interface provides methods for interacting with the
container so that that bean can request information about its environment, like the
identity of its client or the status of a transaction, or can obtain remote references to
itself.

* Java Naming and Directory Interface (JNDI): JNDI is a standard extension to the Java
platform for accessing naming systems like LDAP, NetWare, file systems, etc. Every
bean automatically has access to a special naming system called the Environment
Naming Context (ENC). The ENC is managed by the container and accessed by beans
using JNDI. The JNDI ENC allows a bean to access resources like JDBC connections,
other enterprise beans, and properties specific to that bean.

The EJB specification defines a bean-container contract, which includes the mechanisms
(callbacks, EJBContext, JNDI ENC) described above as well as a strict set of rules that
describe how enterprise beans and their containers will behave at run time, how security
access is checked, how transactions are managed, how persistence is applied, and so on.
The bean-container contract is designed to make enterprise beans portable between EJB
containers so that enterprise beans can be developed once, then run in any EJB container.
Vendors like BEA, IBM, and GemStone sell application servers that include EJB containers.
Ideally, any enterprise bean that conforms to the specification should be able to run in any
conformant EJB container.

Portability is central to the value that EJB brings to the table. Portability ensures that a bean
developed for one container can be migrated to another if another brand offers more
performance, features, or savings. Portability also means that the bean developer's skills can
be leveraged across several EJB container brands, providing organizations and developers
with better opportunities.

In addition to portability, the simplicity of the EJB programming model makes EJB valuable.
Because the container takes care of managing complex tasks like security, transactions,
persistence, concurrency and resource management the bean developer is free to focus
attention on business rules and a very simple programming model. A simple programming
model means that beans can be developed faster without requiring a Ph.D. in distributed
objects, transactions and other enterprise systems. EJB brings transaction processing and

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 8

distributed objects development into the mainstream.

Exercise
Exercise 1. How to install and configure Sun's J2EE Reference Implementation: Tasks on
page 40

Enterprise beans
To create an EJB server-side component, an enterprise bean developer provides two
interfaces that define a bean's business methods, plus the actual bean implementation class.
The client then uses a bean's public interfaces to create, manipulate, and remove beans from
the EJB server. The implementation class, to be called the bean class, is instantiated at run
time and becomes a distributed object.

Enterprise beans live in an EJB container and are accessed by client applications over the
network through their remote and home interfaces. The remote and home interfaces expose
the capabilities of the bean and provide all the methods needed to create, update, interact
with, and delete the bean. A bean is a server-side component that represents a business
concept like a Customer or a HotelClerk.

Remote and home interfaces
The remote and home interfaces represent the bean, but the container insulates the beans
from direct access from client applications. Every time a bean is requested, created, or
deleted, the container manages the whole process.

The home interface represents the life-cycle methods of the component (create, destroy,
find) while the remote interface represents the business method of the bean. The remote and
home interfaces extend the javax.ejb.EJBObject and javax.ejb.EJBHome
interfaces respectively. These EJB interface types define a standard set of utility methods

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 9

http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/ejb/EJBObject.html
http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/ejb/EJBHome.html

and provide common base types for all remote and home interfaces.

Clients use the bean's home interface to obtain references to the bean's remote interface.
The remote interface defines the business methods like accessor and mutator methods for
changing a customer's name, or business methods that perform tasks like using the
HotelClerk bean to reserve a room at a hotel. Below is an example of how a Customer bean
might be accessed from a client application. In this case the home interface is the
CustomerHome type and the remote interface is the Customer type.

CustomerHome home = // ... obtain a reference that
// implements the home interface.

// Use the home interface to create a
// new instance of the Customer bean.
Customer customer = home.create(customerID);

// using a business method on the Customer.
customer.setName(someName);

The remote interface defines the business methods of a bean, the methods that are specific
to the business concept it represents. Remote interfaces are subclassed from the
javax.ejb.EJBObject interface, which is a subclass of the java.rmi.Remote
interface. The importance of the remote interfaces inheritance hierarchy is discussed later in
Section 4. For now, focus on the business methods and their meaning. Below is the definition
of a remote interface for a Customer bean:

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Customer extends EJBObject {

public Name getName() throws RemoteException;
public void setName(Name name) throws RemoteException;
public Address getAddress() throws RemoteException;
public void setAddress(Address address) throws RemoteException;

}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 10

http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/ejb/EJBObject.html
http://java.sun.com/products/jdk/1.2/docs/api/java/rmi/Remote.html

The remote interface defines accessor and mutator methods to read and update information
about a business concept. This is typical of a type of bean called an entity bean, which
represents a persistent business object (business objects whose data is stored in a
database). Entity beans represent business data in the database and add behavior specific
to that data.

Business methods
Business methods can also represent tasks that a bean performs. Although entity beans
often have task-oriented methods, tasks are more typical of a type of bean called a session
bean. Session beans do not represent data like entity beans. They represent business
processes or agents that perform a service, like making a reservation at a hotel. Below is the
definition of the remote interface for a HotelClerk bean, which is a type of session bean:

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface HotelClerk extends EJBObject {

public void reserveRoom(Customer cust, RoomInfo ri,
Date from, Date to)

throws RemoteException;

public RoomInfo availableRooms(Location loc, Date from, Date to)
throws RemoteException;

}

The business methods defined in the HotelClerk remote interface represent processes
rather than simple accessors. The HotelClerk bean acts as an agent in the sense that it
performs tasks on behalf of the user, but is not itself persistent in the database. You don't
need information about the HotelClerk; you need the hotel clerk to perform tasks for you.
This is typical behavior for a session bean.

There are two basic types of enterprise beans: entity beans, which represent data in a
database, and session beans, which represent processes or act as agents performing tasks.
As you build an EJB application you will create many enterprise beans, each representing a
different business concept. Each business concept will be manifested as either an entity
bean or a session bean. You will choose which type of bean a business concept becomes
based on how it is intended to be used.

Entity beans
For every remote interface there is an implementation class, a business object that actually
implements the business methods defined in the remote interface. This is the bean class; the
key element of the bean. Below is a partial definition of the Customer bean class:

import javax.ejb.EntityBean;

public class CustomerBean implements EntityBean {

Address myAddress;
Name myName;
CreditCard myCreditCard;

public Name getName() {

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 11

return myName;
}

public void setName(Name name) {
myName = name;

}

public Address getAddress() {
return myAddress;

}

public void setAddress(Address address) {
myAddress = address;

}

...
}

CustomerBean is the implementation class. It holds the data and provides accessor
methods and other business methods. As an entity bean, the CustomerBean provides an
object view of customer data. Instead of writing database access logic in an application, the
application can simply use the remote interface to the Customer bean to access customer
data. Entity beans implement the javax.ejb.EntityBean type, which defines a set of
notification methods that the bean uses to interact with its container. These notification
methods are examined in detail under "Callback methods" in Section 4.

Session beans
The HotelClerk bean is a session bean, which is similar in many respects to an entity bean.
Session beans represent a set of processes or tasks, which are performed on behalf of the
client application. Session beans may use other beans to perform a task or access the
database directly. A little bit of code shows a session bean doing both. The reserveRoom()
method shown below uses several other beans to accomplish a task, while the
availableRooms() method uses JDBC to access the database directly:

import javax.ejb.SessionBean;

public class HotelClerkBean implements SessionBean {

public void reserveRoom(Customer cust, RoomInfo ri,

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 12

http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/ejb/EntityBean.html

Date from, Date to) {
CreditCard card = cust.getCreditCard();
RoomHome roomHome = // ... get home reference
Room room = roomHome.findByPrimaryKey(ri.getID());
double amount = room.getPrice(from,to);
CreditServiceHome creditHome = // ... get home reference
CreditService creditAgent = creditHome.create();
creditAgent.verify(card, amount);
ReservationHome resHome = // ... get home reference
Reservation reservation = resHome.create(cust,room,from,to);

}

public RoomInfo[] availableRooms(Location loc,
Date from, Date to) {

// Make an SQL call to find available rooms
Connection con = // ... get database connection
Statement stmt = con.createStatement();
ResultSet results = stmt.executeQuery("SELECT ...");
...
return roomInfoArray;

}
}

You may have noticed that the bean classes defined above do not implement the remote or
home interfaces. EJB doesn't require that the bean class implement these interfaces; in fact
it's discouraged because the base types of the remote and home interfaces (EJBObject and
EJBHome) define a lot of other methods that are implemented by the container automatically.
The bean class does, however, provide implementations for all the business methods
defined in the remote interface as well as methods. Callback methods are discussed in more
detail in Section 4.

Life-cycle methods
In addition to a remote interface, all beans have a home interface. The home interface
provides life-cycle methods for creating, destroying, and locating beans. These life-cycle
behaviors are separated out of the remote interface because they represent behaviors that
are not specific to a single bean instance. Below is the definition of the home interface for the
Customer bean. Notice that it extends the javax.ejb.EJBHome interface, which extends
the java.rmi.Remote interface.

import javax.ejb.EJBHome;
import javax.ejb.CreateException;
import javax.ejb.FinderException;
import java.rmi.RemoteException;

public interface CustomerHome extends EJBHome {

public Customer create(Integer customerNumber)
throws RemoteException, CreateException;

public Customer findByPrimaryKey(Integer customerNumber)
throws RemoteException, FinderException;

public Enumeration findByZipCode(int zipCode)
throws RemoteException, FinderException;

}

The create() method is used to create a new entity. This will result in a new record in the
database. A home may have many create() methods. The number and datatype of the
arguments of each create() are left up to the bean developer, but the return type must be
the remote interface datatype. In this case, invoking create() on the CustomerHome

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 13

http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/ejb/EJBHome.html
http://java.sun.com/products/jdk/1.2/docs/api/java/rmi/Remote.html

interface will return an instance of Customer. The findByPrimaryKey() and
findByZipCode() methods are used to locate specific instance of the customer bean.
Again, you may define as many find methods as you need.

Back to the remote and home interfaces
The remote and home interfaces are used by applications to access enterprise beans at run
time. The home interface allows the application to create or locate the bean, while the remote
interface allows the application to invoke a bean's business methods, as shown here:

CustomerHome home = // Get a reference to the CustomerHome object

Customer customer = home.create(new Integer(33));

Name name = new Name("Richard", "Wayne", "Monson-Haefel");
customer.setName(name);

Enumeration enumOfCustomers = home.findByZip(55410);

Customer customer2 = home.findByPrimaryKey(new Integer(33));

Name name2 = customer2.getName();

// output is "Richard Wayne Monson-Haefel"
System.out.println(name);

The javax.ejb.EJBHome interface also defines other methods that the CustomerBean
automatically inherits, including a set of remove() methods that allow the application to
destroy bean instances.

Enterprise beans as distributed objects
The remote and home interfaces are types of Java RMI Remote interfaces. The
java.rmi.Remote interface is used by distributed objects to represent the bean in a
different address space (process or machine). An enterprise bean is a distributed object.
That means that the bean class is instantiated and lives in the container, but it can be
accessed by applications that live in other address spaces.

To make an object instance in one address space available in another requires a little trick
involving network sockets. To make the trick work, wrap the instance in a special object
called a skeleton that has a network connection to another special object called a stub. The
stub implements the remote interface so it looks like a business object. But the stub doesn't
contain business logic; it holds a network socket connection to the skeleton. Every time a
business method is invoked on the stub's remote interface, the stub sends a network
message to the skeleton telling it which method was invoked. When the skeleton receives a
network message from the stub, it identifies the method invoked and the arguments, and
then invokes the corresponding method on the actual instance. The instance executes the
business method and returns the result to the skeleton, which sends it to the stub. The
diagram below illustrates this concept:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 14

http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/ejb/EJBHome.html
http://java.sun.com/products/jdk/1.2/docs/api/java/rmi/Remote.html

The stub returns the result to the application that invoked its remote interface method. From
the perspective of the application using the stub, it looks like the stub does the work locally.
Actually, the stub is just a dumb network object that sends the requests across the network
to the skeleton, which in turn invokes the method on the actual instance. The instance does
all the work; the stub and skeleton just pass the method identity and arguments back and
forth across the network.

In EJB, the skeletons for the remote and home interfaces are implemented by the container,
not the bean class. This is to ensure that every method invoked on these reference types by
a client application are first handled by the container and then delegated to the bean
instance. The container must intercept these requests intended for the bean so that it can
apply persistence (entity beans), transactions, and access control automatically.

Distributed object protocols define the format of network messages sent between address
spaces. Distributed object protocols get pretty complicated, but luckily you don't see any of it
because it's handled automatically. Most EJB servers support either the Java Remote
Method Protocol (JRMP) or CORBA's Internet Inter-ORB Protocol (IIOP). The bean and
application programmer only see the bean class and its remote interface; the details of the
network communication are hidden.

With respect to the EJB API, the programmer doesn't care whether the EJB server uses
JRMP or IIOP -- the API is the same. The EJB specification requires that you use a
specialized version of the Java RMI API, when working with a bean remotely. Java RMI is an
API for accessing distributed objects and is somewhat protocol agnostic -- in the same way
that JDBC is database agnostic. So, an EJB server can support JRMP or IIOP, but the bean
and application developer always uses the same Java RMI API. In order for the EJB server
to have the option of supporting IIOP, a specialized version of Java RMI, called Java
RMI-IIOP was developed. Java RMI-IIOP uses IIOP as the protocol and the Java RMI API.
EJB servers don't have to use IIOP, but they do have to respect Java RMI-IIOP restrictions,
so EJB 1.1 uses the specialized Java RMI-IIOP conventions and types, but the underlying
protocol can be anything.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 15

Section 4. Entity beans

Introduction
The entity bean is one of two primary bean types: entity and session. The entity bean is used
to represent data in the database. It provides an object-oriented interface to data that would
normally be accessed by the JDBC or some other back-end API. More than that, entity
beans provide a component model that allows bean developers to focus their attention on the
business logic of the bean, while the container takes care of managing persistence,
transactions, and access control.

There are two basic kinds of entity beans: container-managed persistence (CMP) and
bean-managed persistence (BMP). With CMP, the container manages the persistence of the
entity bean. Vendor tools are used to map the entity fields to the database and absolutely no
database access code is written in the bean class. With BMP, the entity bean contains
database access code (usually JDBC) and is responsible for reading and writing its own
state to the database. BMP entities have a lot of help with this since the container will alert
the bean as to when it's necessary to make an update or read its state from the database.
The container can also handle any locking or transactions, so that the database maintains
integrity.

Container-managed persistence
Container-managed persistence beans are the simplest for the bean developer to create and
the most difficult for the EJB server to support. This is because all the logic for synchronizing
the bean's state with the database is handled automatically by the container. This means that
the bean developer doesn't need to write any data access logic, while the EJB server is
supposed to take care of all the persistence needs automatically -- a tall order for any
vendor. Most EJB vendors support automatic persistence to a relational database, but the
level of support varies. Some provide very sophisticated object-to-relational mapping, while
others are very limited.

In this panel, you will expand the CustomerBean developed earlier to a complete definition of
a Container-managed persistence bean. In the panel on bean-managed persistence, you
will modify the CustomerBean to manage its own persistence.

Bean class
An enterprise bean is a complete component that is made up of at least two interfaces and a
bean implementation class. All these types will be presented and their meaning and
application explained, starting with the bean class, which is defined below:

import javax.ejb.EntityBean;

public class CustomerBean implements EntityBean {

int customerID;
Address myAddress;
Name myName;
CreditCard myCreditCard;

// CREATION METHODS

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 16

public Integer ejbCreate(Integer id) {
customerID = id.intValue();
return null;

}

public void ejbPostCreate(Integer id) {
}

public Customer ejbCreate(Integer id, Name name) {
myName = name;
return ejbCreate(id);

}

public void ejbPostCreate(Integer id, Name name) {
}

// BUSINESS METHODS
public Name getName() {

return myName;
}

public void setName(Name name) {
myName = name;

}

public Address getAddress() {
return myAddress;

}

public void setAddress(Address address) {
myAddress = address;

}

public CreditCard getCreditCard() {
return myCreditCard;

}

public void setCreditCard(CreditCard card) {
myCreditCard = card;

}

// CALLBACK METHODS
public void setEntityContext(EntityContext cntx) {
}

public void unsetEntityContext() {
}

public void ejbLoad() {
}

public void ejbStore() {
}

public void ejbActivate() {
}

public void ejbPassivate() {
}

public void ejbRemove() {
}

}

This is a good example of a fairly simple CMP entity bean. Notice that there is no database
access logic in the bean. This is because the EJB vendor provides tools for mapping the
fields in the CustomerBean to the database. The CustomerBean class, for example, could
be mapped to any database providing it contains data that is similar to the fields in the bean.
In this case, the bean's instance fields are composed of a primitive int and simple
dependent objects (Name, Address,and CreditCard) with their own attributes. Below are
the definitions for these dependent objects:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 17

// The Name class
public class Name implements Serializable {

public String lastName, firstName, middleName;

public Name(String lastName, String firstName,
String middleName) {

this.lastName = lastName;
this.firstName = firstName;
this.middleName = middleName;

}

public Name() {}
}

// The Address class
public class Address implements Serializable {

public String street, city, state, zip;

public Address(String street, String city,
String state, String zip) {

this.street = street;
this.city = city;
this.state = state;
this.zip = zip;

}

public Address() {}
}

// The CreditCard class
public class CreditCard implements Serializable {

public String number, type, name;
public Date expDate;

public CreditCard(String number, String type,
String name, Date expDate) {

this.number = number;
this.type = type;
this.name = name;
this.expDate = expDate;

}

public CreditCard() {}
}

These fields are called container-managed fields because the container is responsible for
synchronizing their state with the database; the container manages the fields.
Container-managed fields can be any primitive data types or serializable type. This case
uses both a primitive int (customerID) and serializable objects (Address, Name,
CreditCard). To map the dependent objects to the database, a fairly sophisticated mapping
tool would be needed. Not all fields in a bean are automatically container-managed fields;
some may be just plain instance fields for the bean's transient use. A bean developer
distinguishes container-managed fields from plain instance fields by indicating which fields
are container-managed in the deployment descriptor.

The container-managed fields must have corresponding types (columns in RDBMS) in the
database either directly or through object-relational mapping. The CustomerBean might, for
example, map to a CUSTOMER table in the database that has the following definition:

CREATE TABLE CUSTOMER
{

id INTEGER PRIMARY KEY,
last_name CHAR(30),
first_name CHAR(20),
middle_name CHAR(20),

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 18

street CHAR(50),
city CHAR(20),
state CHAR(2),
zip CHAR(9),
credit_number CHAR(20),
credit_date DATE,
credit_name CHAR(20),
credit_type CHAR(10)

}

With container-managed persistence, the vendor must have some kind of proprietary tool
that can map the bean's container-managed fields to their corresponding columns in a
specific table, CUSTOMER in this case.

Once the bean's fields are mapped to the database, and the Customer bean is deployed, the
container will manage creating records, loading records, updating records, and deleting
records in the CUSTOMER table in response to methods invoked on the Customer bean's
remote and home interfaces.

A subset (one or more) of the container-managed fields will also be identified as the bean's
primary key. The primary key is the index or pointer to a unique record(s) in the database
that makes up the state of the bean. In the case of the CustomerBean, the id field is the
primary key field and will be used to locate the bean's data in the database. Primitive single
field primary keys are represented as their corresponding object wrappers. The primary key
of the Customer bean for example is a primitive int in the bean class, but to a bean's clients
it will manifest itself as the java.lang.Integer type. Primary keys that are made up of
several fields, called compound primary keys, will be represented by a special class defined
by the bean developer. Primary keys are similar in concept to primary keys in a relational
database -- actually when a relational database is used for persistence, they are often the
same thing.

Home interface
To create a new instance of a CMP entity bean, and therefore insert data into the database,
the create() method on the bean's home interface must be invoked. The Customer bean's
home interface is defined by the CustomerHome interface; the definition is shown below:

public interface CustomerHome extends javax.ejb.EJBHome {

public Customer create(Integer customerNumber)
throws RemoteException,CreateException;

public Customer create(Integer customerNumber, Name name)
throws RemoteException,CreateException;

public Customer findByPrimaryKey(Integer customerNumber)
throws RemoteException, FinderException;

public Enumeration findByZipCode(int zipCode)
throws RemoteException, FinderException;

}

Below is an example of how the home interface would be used by an application client to
create a new customer:

CustomerHome home = // Get a reference to the CustomerHome object

Name name = new Name("John", "W", "Smith");

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 19

http://java.sun.com/products/jdk/1.2/docs/api/java/lang/Integer.html

Customer customer = home.create(new Integer(33), name);

A bean's home interface may declare zero or more create() methods, each of which must
have corresponding ejbCreate() and ejbPostCreate() methods in the bean class.
These creation methods are linked at run time, so that when a create() method is invoked
on the home interface, the container delegates the invocation to the corresponding
ejbCreate() and ejbPostCreate() methods on the bean class.

When the create() method on a home interface is invoked, the container delegates the
create() method call to the bean instance's matching ejbCreate() method. The
ejbCreate() methods are used to initialize the instance state before a record is inserted
into the database. In this case, they initialize the customerID and Name fields. When the
ejbCreate() method is finished (they return null in CMP) the container reads the
container-managed fields and inserts a new record into the CUSTOMER table indexed by
the primary key, in this case customerID as it maps to the CUSTOMER.ID column.

In EJB, an entity bean doesn't technically exist until after its data has been inserted into the
database, which occurs during the ejbCreate() method. Once the data has been inserted,
the entity bean exists and can access its own primary key and remote references, which isn't
possible until after the ejbCreate() method completes and the data is in the database. If a
bean needs to access its own primary key or remote reference after it's created, but before it
services any business methods, it can do so in the ejbPostCreate() method. The
ejbPostCreate() allows the bean to do any post-create processing before it begins
serving client requests. For every ejbCreate() there must be a matching (matching
arguments) ejbPostCreate() method.

The methods in the home interface that begin with "find" are called the find methods. These
are used to query the EJB server for specific entity beans, based on the name of the method
and arguments passed. Unfortunately, there is no standard query language defined for find
methods, so each vendor will implement the find method differently. In CMP entity beans, the
find methods are not implemented with matching methods in the bean class; containers
implement them when the bean is deployed in a vendor specific manner. The deployer will
use vendor specific tools to tell the container how a particular find method should behave.
Some vendors will use object-relational mapping tools to define the behavior of a find
method while others will simply require the deployer to enter the appropriate SQL command.

There are two basic kinds of find methods: single-entity and multi-entity. Single-entity find
methods return a remote reference to the one specific entity bean that matches the find
request. If no entity beans are found, the method throws an ObjectNotFoundException .
Every entity bean must define the single-entity find method with the method name
findByPrimaryKey(), which takes the bean's primary key type as an argument. (In the
above example, you used the Integer type, which wrapped the int type of the id field in
the bean class.) The multi-entity find methods return a collection (Enumeration or
Collection type) of entities that match the find request. If no entities are found, the
multi-entity find returns an empty collection. (Note that an empty collection is not the same
thing as a null reference.)

Remote interface
Every entity bean must define a remote interface in addition to the home interface. The
remote interface defines the business methods of the entity bean. The following is the remote

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 20

http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/ejb/ObjectNotFoundException.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Enumeration.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Collection.html

interface definition for the Customer bean:

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Customer extends EJBObject {

public Name getName()
throws RemoteException;

public void setName(Name name)
throws RemoteException;

public Address getAddress()
throws RemoteException;

public void setAddress(Address address)
throws RemoteException;

public CreditCard getCreditCard()
throws RemoteException;

public void setCreditCard(CreditCard card)
throws RemoteException;

}

Below is an example of how a client application would use the remote interface to interact
with a bean:

Customer customer = // ... obtain a remote reference to the bean

// get the customer's address
Address addr = customer.getAddress();

// change the zip code
addr.zip = "56777";

// update the customer's address
customer.setAddress(addr);

The business methods in the remote interface are delegated to the matching business
methods in the bean instance. In the Customer bean, the business methods are all simple
accessors and mutators, but they could be more complicated. In other words, an entity's
business methods are not limited to reading and writing data; they can also perform tasks
and computations.

If customers had, for example, a loyalty program that rewarded frequent use, there might be
methods to upgrade membership in the program based on an accumulation of overnight
stays. See below:

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Customer extends EJBObject {

public MembershipLevel addNights(int nights_stayed)
throws RemoteException;

public MembershipLevel upgradeMembership()
throws RemoteException;

public MembershipLevel getMembershipLevel()
throws RemoteException;

... Simple accessor business methods go here
}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 21

The addNights() and upgradeMembership() methods are more sophisticated than
simple accessor methods. They apply business rules to change the membership level and go
beyond reading and writing data.

Callback methods
The bean class defines create methods that match methods in the home interface and
business methods that match methods in the remote interface. The bean class also
implements a set of callback methods that allow the container to notify the bean of events in
its life cycle. The callback methods are defined in the javax.ejb.EntityBean interface
that is implemented by all entity beans, including the CustomerBean class. The
EntityBean interface has the following definition. Notice that the bean class implements
these methods.

public interface javax.ejb.EntityBean {

public void setEntityContext();

public void unsetEntityContext();

public void ejbLoad();

public void ejbStore();

public void ejbActivate();

public void ejbPassivate();

public void ejbRemove();
}

The setEntityContext() method provides the bean with an interface to the container
called the EntityContext. The EntityContext interface contains methods for obtaining
information about the context under which the bean is operating at any particular moment.
The EntityContext interface is used to access security information about the caller; to
determine the status of the current transaction or to force a transaction rollback; or to get a
reference to the bean itself, its home, or its primary key. The EntityContext is set only
once in the life of an entity bean instance, so its reference should be put into one of the bean
instance's fields if it will be needed later.

The Customer bean above doesn't use the EntityContext, but it could. For example, it
could use the EntityContext to validate the caller's membership in a particular security
role. Below is an example, where the EntityContext is used to validate that the caller is a
Manager, the only role (security identity) that can set the credit card type on a customer to
be a WorldWide card, the no-limit card of the super wealthy. (Customers with this card are
automatically tagged for extra service.)

import javax.ejb.EntityBean;

public class CustomerBean implements EntityBean {

int customerID;
Address myAddress;
Name myName;
CreditCard myCreditCard;
EntityContext ejbContext;

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 22

http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/ejb/EntityBean.html

// CALLBACK METHODS
public void setEntityContext(EntityContext cntx) {

ejbContext = cntx
}

public void unsetEntityContext() {
ejbContext = null;

}

// BUSINESS METHODS
public void setCreditCard(CreditCard card) {

if (card.type.equals("WorldWide"))
if (ejbContext.isCallerInRole("Manager"))

myCreditCard = card;
else

throw new SecurityException();
else

myCreditCard = card;
}

public CreditCard getCreditCard() {
return myCreditCard;

}
...

}

The unsetEntityContext() method is used at the end of the bean's life cycle -- before
the instance is evicted from memory -- to dereference the EntityContext and perform
any last-minute clean-up.

The ejbLoad() and ejbStore() methods in CMP entities are invoked when the entity
bean's state is being synchronized with the database. The ejbLoad() is invoked just after
the container has refreshed the bean container-managed fields with its state from the
database. The ejbStore() method is invoked just before the container is about to write the
bean container-managed fields to the database. These methods are used to modify data as
it's being synchronized. This is common when the data stored in the database is different
than the data used in the bean fields. The methods might be used, for example, to compress
data before it is stored and decompress it when it is retrieved from the database.

In the Customer bean, the ejbLoad() and ejbStore() methods might be used to convert
the dependent objects (Name, Address, CreditCard) to simple String objects and
primitive types, if the EJB container is not sophisticated enough to map the dependent
objects to the CUSTOMER table. Below is an example of how the bean might be modified:

import javax.ejb.EntityBean;

public class CustomerBean implements EntityBean {

//container-managed fields
int customerID;
String lastName;
String firstName;
String middleName;
...

// not-container-managed fields
Name myName;
Address myAddress;
CreditCard myCreditCard;

// BUSINESS METHODS
public Name getName() {

return myName;
}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 23

public void setName(Name name) {
myName = name;

}
...

public void ejbLoad() {

if (myName == null)
myName = new Name();

myName.lastName = lastName;
myName.firstName = firstName;
myName.middleName = middleName;
...

}

public void ejbStore() {

lastName = myName.lastName;
firstName = myName.firstName;
middleName = myName.middleName;
...

}
}

The ejbPassivate() and ejbActivate() methods are invoked on the bean by the
container just before the bean is passivated and just after the bean is activated, respectively.
Passivation in entity beans means that the bean instance is disassociated with its remote
reference so that the container can evict it from memory or reuse it. It's a resource
conservation measure the container employs to reduce the number of instances in memory.
A bean might be passivated if it hasn't been used for a while or as a normal operation
performed by the container to maximize reuse of resources. Some containers will evict beans
from memory, while others will reuse instances for other more active remote references. The
ejbPassivate() and ejbActivate() methods provide the bean with a notification as to
when it's about to be passivated (disassociated with the remote reference) or activated
(associated with a remote reference).

Exercise
Exercise 2. How to create an entity bean: Tasks on page 43

Bean-managed persistence
The bean-managed persistence (BMP) enterprise bean manages synchronizing its state
with the database as directed by the container. The bean uses a database API (usually
JDBC) to read and write its fields to the database, but the container tells it when to do each
synchronization operation and manages the transactions for the bean automatically.
Bean-managed persistence gives the bean developer the flexibility to perform persistence
operations that are too complicated for the container or to use a data source that is not
supported by the container -- custom and legacy databases, for example.

In this panel, you'll modify the CustomerBean class to be a BMP bean instead of a CMP
bean. This modification will not impact the remote or home interface at all. In fact, you won't
modify the original CustomerBean directly. Instead, you'll change it to bean-managed
persistence by extending the bean and overriding the appropriate methods. Below is the
definition of the class that will extend the Customer bean class to make it a BMP entity. In
most cases, you will not extend a bean to make it BMP, you will just implement the bean as

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 24

BMP directly. This strategy (extending the CMP bean) is done for two reasons: it allows the
bean to be either a CMP or BMP bean; and it conveniently cuts down on the amount of code
needed to display. Below is the definition of the BMP class that will be added to as this panel
proceeds:

public class CustomerBean_BMP extends CustomerBean {
public void ejbLoad() {

// override implementation
}
public void ejbStore() {

// override implementation
}
public void ejbCreate() {

// override implementation
}
public void ejbRemove() {

// override implementation
}
private Connection getConnection() {

// new helper method
}

}

With BMP beans, the ejbLoad() and ejbStore() methods are used differently by the
container and bean than was the case in CMP. In BMP, the ejbLoad() and ejbStore()
methods contain code to read the bean's data from the database and to write changes to the
database, respectively. These methods are called on the bean automatically, when the EJB
server decides it's a good time to read or write data.

The CustomerBean_BMP bean manages its own persistence. In other words, the
ejbLoad() and ejbStore() methods must include database access logic, so that the
bean can load and store its data when the EJB container tells it to. The container will execute
the ejbLoad() and ejbStore() methods automatically when appropriate.

The ejbLoad() method is usually invoked by the container at the beginning of a
transaction, just before the container delegates a business method to the bean. The code
below shows how to implement the ejbLoad() method using JDBC:

import java.sql.Connection;

public class CustomerBean_BMP extends CustomerBean {

public void ejbLoad() {
Connection con;
try {
Integer primaryKey = (Integer)ejbContext.getPrimaryKey();
con = this.getConnection();
Statement sqlStmt =
con.createStatement("SELECT * FROM Customer " +

" WHERE customerID = " +
primaryKey.intValue());

ResultSet results = sqlStmt.executeQuery();
if (results.next()) {
// get the name information from the customer table
myName = new Name();
myName.first = results.getString("FIRST_NAME");
myName.last = results.getString("LAST_NAME");
myName.middle = results.getString("MIDDLE_NAME");
// get the address information from the customer table
myAddress = new Address();
myAddress.street = results.getString("STREET");
myAddress.city = results.getString("CITY");
myAddress.state = results.getString("STATE");
myAddress.zip = results.getInt("ZIP");
// get the credit card information from the customer table

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 25

myCreditCard = new CreditCard();
myCreditCard.number = results.getString("CREDIT_NUMBER");
myCreditCard.expDate = results.getString("CREDIT_DATE");
myCreditCard.type = results.getString("CREDIT_TYPE");
myAddress.name = results.getInt("CREDIT_NAME");

}
}
catch (SQLException sqle) {
throw new EJBException(sqle);

}
finally {
if (con!=null)
con.close();

}
}

}

In the ejbLoad() method, use the ejbContext() reference to the bean's
EntityContext to obtain the instance's primary key. This approach ensures that you use
the correct index to the database. Obviously, the CustomerBean_BMP will need to use the
inherited setEntityContext() and unsetEntityContext() methods as illustrated
earlier.

The ejbStore() method is invoked by the container on the bean, at the end of a
transaction, just before the container attempts to commit all changes to the database.

import java.sql.Connection;

public class CustomerBean_BMP extends CustomerBean {

public void ejbLoad() {
... read data from database

}

public void ejbStore() {
Connection con;
try {
Integer primaryKey = (Integer)ejbContext.getPrimaryKey();
con = this.getConnection();
PreparedStatement sqlPrep =
con.prepareStatement(

"UPDATE customer set " +
"last_name = ?, first_name = ?, middle_name = ?, " +
"street = ?, city = ?, state = ?, zip = ?, " +
"card_number = ?, card_date = ?, " +
"card_name = ?, card_name = ?, " +
"WHERE id = ?"

);
sqlPrep.setString(1,myName.last);
sqlPrep.setString(2,myName.first);
sqlPrep.setString(3,myName.middle);
sqlPrep.setString(4,myAddress.street);
sqlPrep.setString(5,myAddress.city);
sqlPrep.setString(6,myAddress.state);
sqlPrep.setString(7,myAddress.zip);
sqlPrep.setInt(8, myCreditCard.number);
sqlPrep.setString(9, myCreditCard.expDate);
sqlPrep.setString(10, myCreditCard.type);
sqlPrep.setString(11, myCreditCard.name);
sqlPrep.setInt(12,primaryKey.intValue());
sqlPrep.executeUpdate();

}
catch (SQLException sqle) {
throw new EJBException(sqle);

}
finally {
if (con!=null)
con.close();

}
}

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 26

}

In both the ejbLoad() and ejbStore() methods the bean synchronizes its own state with
the database using JDBC. If you studied the code carefully you may have noticed that the
bean obtains its database connection from the mysterious this.getConnection()
method invocation, a method yet to be implemented. The getConnection() method is not
a standard EJB method; it's just a private helper method implemented to conceal the
mechanics of obtaining a database connection. Below is the definition of the
getConnection() method:

import java.sql.Connection;

public class CustomerBean_BMP extends CustomerBean {

public void ejbLoad() {
... read data from database

}

public void ejbStore() {
... write data to database

}

private Connection getConnection() throws SQLException {

InitialContext jndiContext = new InitialContext();
DataSource source = (DataSource)

jndiContext.lookup("java:comp/env/jdbc/myDatabase");
return source.getConnection();

}
}

Database connections are obtained from the container using a default JNDI context called
the JNDI Environment Naming Context (ENC). The ENC provides access to transactional,
pooled, JDBC connections through the standard connection factory, the
javax.sql.DataSource type.

In BMP, the ejbLoad() and ejbStore() methods are invoked by the container to
synchronize the bean instance with data in the database. To insert and remove entities in the
database, the ejbCreate() and ejbRemove() methods are implemented with similar
database access logic. The ejbCreate() methods are implemented so that a new record is
inserted into the database and the ejbRemove() methods are implemented so that the
entity's data is deleted from the database. The ejbCreate() methods and the
ejbRemove() method of a BMP entity are invoked by the container in response to
invocations on their corresponding methods in the home and remote interfaces. The
implementations of these methods are shown below:

public void ejbCreate(Integer id) {
this.customerID = id.intValue();
Connection con;
try {
con = this.getConnection();
Statement sqlStmt =
con.createStatement("INSERT INTO customer id VALUES (" +

customerID + ")");
sqlStmt.executeUpdate();
return id;

}
catch(SQLException sqle) {
throw new EJBException(sqle);

}
finally {
if (con!=null)
con.close();

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 27

http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/sql/DataSource.html

}
}

public void ejbRemove() {
Integer primaryKey = (Integer)ejbContext.getPrimaryKey();
Connection con;
try {
con = this.getConnection();
Statement sqlStmt =
con.createStatement("DELETE FROM customer WHERE id = "

primaryKey.intValue());
sqlStmt.executeUpdate();

}
catch(SQLException sqle) {
throw new EJBException(sqle);

}
finally {
if (con!=null)
con.close();

}
}

In BMP, the bean class is responsible for implementing the find methods defined in the home
interface. For each find method defined in the home interface there must be corresponding
ejbFind() method in the bean class. The ejbFind() methods locate the appropriate
bean records in the database and return their primary keys to the container. The container
converts the primary keys into bean references and returns them to the client. Below is an
example implementation of the ejbFindByPrimaryKey() method in the
CustomerBean_BMP class, which corresponds to the findByPrimaryKey() defined in the
CustomerHome interface:

public Integer ejbFindByPrimaryKey(Integer primaryKey)
throws ObjectNotFoundException {

Connection con;
try {

con = this.getConnection();
Statement sqlStmt =

con.createStatement("SELECT * FROM Customer " +
" WHERE customerID = " +
primaryKey.intValue());

ResultSet results = sqlStmt.executeQuery();
if (results.next())

return primaryKey;
else

throw ObjectNotFoundException();
}
catch (SQLException sqle) {

throw new EJBException(sqle);
}
finally {

if (con!=null)
con.close();

}
}

Single-entity find methods like the one above return a single primary key or throw the
ObjectNotFoundException if no matching record is located. Multi-entity find methods
return a collection (java.util.Enumeration or java.util.Collection) of primary
keys. The container converts the collection of primary keys into a collection of remote
references, which are returned to the client. Below is an example of how the multi-entity
ejbFindByZipCode() method, which corresponds to the findByZipCode() method
defined in the CustomerHome interface, would be implemented in the CustomerBean_BMP
class:

public Enumeration ejbFindByZipCode(int zipCode) {

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 28

http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/ejb/ObjectNotFoundException.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Enumeration.html
http://java.sun.com/products/jdk/1.2/docs/api/java/util/Collection.html

Connection con;
try {

con = this.getConnection();
Statement sqlStmt =
con.createStatement("SELECT id FROM Customer " +

" WHERE zip = " +zipCode);

ResultSet results = sqlStmt.executeQuery();
Vector keys = new Vector();
while(results.next()){

int id = results.getInt("id");
keys.addElement(new Integer(id));

}
return keys.elements();

}
catch (SQLException sqle) {

throw new EJBException(sqle);
}
finally {

if (con!=null)
con.close();

}
}

If no matching bean records are found, an empty collection is returned to the container,
which returns an empty collection to the client.

With the implementation of all these methods and a few minor changes to the bean's
deployment descriptor, the CustomerBean_BMP is ready to be deployed as a BMP entity.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 29

Section 5. Session beans

Introduction
Session beans are used to manage the interactions of entity and other session beans,
access resources, and generally perform tasks on behalf of the client. Session beans
correspond to the controller in a model-view-controller architecture because they
encapsulate the business logic of a three-tier architecture.

There are two basic kinds of session bean: stateless and stateful. Stateless session beans
are made up of business methods that behave like procedures; they operate only on the
arguments passed to them when they are invoked. Stateless beans are called stateless
because they are transient; they do not maintain business state between method
invocations. Stateful session beans encapsulate business logic and state specific to a client.
Stateful beans are called "stateful" because they do maintain business state between method
invocations, held in memory and not persistent.

Stateless session beans
Stateless session beans, like all session beans, are not persistent business objects as are
entity beans. They do not represent data in the database. Instead, they represent business
processes or tasks that are performed on behalf of the client using them. The business
methods in a stateless bean act more like traditional procedures in a legacy
transaction-processing monitor. Each invocation of a stateless business method is
independent from previous invocations. Because stateless session beans are stateless, they
are easier for the EJB container to manage, so they tend to process requests faster and use
less resources. But this performance advantage comes at a price: stateless session beans
are stupid. They don't remember anything from one method invocation to the next.

An example of a stateless session bean is a CreditService bean, representing a credit
service that can validate and process credit card charges. A hotel chain might develop a
CreditService bean to encapsulate the process of verifying a credit card number, making a
charge, and recording the charge in the database for accounting purposes. Below are the
remote and home interfaces for the CreditService bean:

// remote interface
public interface CreditService extends javax.ejb.EJBObject {

public void verify(CreditCard card, double amount)
throws RemoteException, CreditServiceException;
public void charge(CreditCard card, double amount)
throws RemoteException, CreditServiceException;

}

// home interface
public interface CreditServiceHome extends java.ejb.EJBHome {

public CreditService create()
throws RemoteException, CreateException;

}

The remote interface, CreditService, defines two methods, verify() and charge(),
which are used by the hotel to verify and charge credit cards. The hotel might use the
verify() method to make a reservation, but not charge the customer. The charge()
method would be used to charge a customer for a room. The home interface,
CreditServiceHome provides one create() method with no arguments. All home

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 30

interfaces for stateless session beans will define just one method, a no-argument create()
method, because session beans do not have find methods and they cannot be initiated with
any arguments when they are created. Stateless session beans do not have find methods,
because stateless beans are all equivalent and are not persistent. In other words, there is no
unique stateless session beans that can be located in the database. Because stateless
session beans are not persisted, they are transient services. Every client that uses the same
type of session bean gets the same service.

Below is the bean class definition for the CreditService bean. This bean encapsulates access
to the Acme Credit Card processing services. Specifically, this bean accesses the Acme
secure Web server and posts requests to validate or charge the customer's credit card.

import javax.ejb.SessionBean;

public class CreditServiceBean implements SessionBean {
URL acmeURL;
HttpURLConnection acmeCon;

public void ejbCreate() {
try {

InitialContext jndiContext = new InitialContext();
URL acmeURL = (URL)
jndiContext.lookup("java:comp/ejb/env/url/acme");
acmeCon = acmeURL.openConnection();

}
catch (Exception e) {

throws new EJBException(e);
}

}

public void verify(CreditCard card, double amount) {
String response = post("verify:" + card.postString() +

":" + amount);
if (response.substring("approved")== -1)

throw new CreditServiceException("denied");
}

public void charge(CreditCard card, double amount)
throws CreditCardException {

String response = post("charge:" + card.postString() +
":" + amount);

if (response.substring("approved")== -1)
throw new CreditServiceException("denied");

}

private String post(String request) {
try {

acmeCon.connect();
acmeCon.setRequestMethod("POST "+request);
String response = acmeCon.getResponseMessage();

}
catch (IOException ioe) {

throw new EJBException(ioe);
}

}

public void ejbRemove() {
acmeCon.disconnect();

}

public void setSessionContext(SessionContext cntx) {}

public void ejbActivate() {}

public void ejbPassivate() {}
}

The CreditService stateless bean demonstrates that a stateless bean can represent a

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 31

collection of independent but related services. In this case, credit card validation and charges
are related but not necessarily interdependent. Stateless beans might be used to access
databases or unusual resources, as is the case with the CreditService bean, or to perform
complex computations. The CreditService bean is used as an example in this tutorial to
demonstrate the service nature of a stateless bean and to provide a context for discussing
the behavior of the call back methods. The use of a stateless session beans is not limited to
the behavior illustrated in this example; stateless beans can be used to perform any kind of
service.

The CreditServiceBean class uses a URL resource factory (acmeURL()) to obtain and
maintain a reference to the Acme Web server which exists on another computer very far
away. The CreditServiceBean uses the acmeURL() to obtain a connection to the Web server
and post requests for the validation and charge of credit cards. The CreditService bean is
used by clients instead of a direct connection so that the service can be better managed by
the EJB container, which will pool connections and managed transactions and security
automatically for the EJB client.

The ejbCreate() method is invoked at the beginning of its lifetime and is invoked only
once. The ejbCreate() method is a convenient method for initiating resource connections
and variables that will be of use to the stateless bean for its lifetime. In the example above,
the CreditServiceBean uses the ejbCreate() to obtain a reference to the
HttpURLConnection factory, which it will use throughout its lifetime to obtain connections
to the Acme Web server.

The CreditServiceBean uses the JNDI ENC to obtain a URL connection factory in the
same way that the CustomerBean used the JNDI ENC to obtain a DataSource resource
factory for JDBC connections. The JNDI ENC is a default JNDI context that all beans have
access to automatically. The JNDI ENC is used to access static properties, other beans, and
resource factories like the java.net.URL and JDBC javax.sql.DataSource . In
addition, the JNDI ENC also provides access to JavaMail and Java Messaging Service
resource factories.

The ejbCreate() and ejbRemove() methods are each only invoked once in its lifetime by
the container; when the bean is first created and when it's finally destroyed. Invocations of
the create() and remove() methods on its home and remote interfaces by the client do
not result in invocations of the ejbCreate() and ejbRemove() methods on the bean
instance. Instead, an invocation of the create() method provides the client with a reference
to the stateless bean type and the remove() methods invalidate the reference. The
container will decide when bean instances are actually created and destroyed and will invoke
the ejbCreate() and ejbRemove() methods at these times. This allows stateless
instances to be shared between many clients without impacting the clients' references.

In the CreditServiceBean, the ejbCreate() and ejbRemove() methods are used to
obtain a URL connection at the beginning the bean instance's life and to disconnect from it at
the end of the bean instance's life. Between the times that the URL connection is obtained
and disconnected it is used by the business methods. This approach reduces the number of
times that a connection needs to be obtained and disconnected, conserving resources. It
may seem wasteful to maintain the URL connection between method invocations, but
stateless session beans are designed to be shared between many clients, so that they are in
constant use. As soon as a stateless instance completes a method invocation for a client, it
can immediately service another client. Ideally, there is little down time for a stateless
session bean instance, so it makes sense to maintain the URL connection.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 32

http://java.sun.com/products/jdk/1.2/docs/api/java/net/URL.html
http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/sql/DataSource.html

The verify() and charge() methods delegate their requests to the post() method, a
private helper method. The post() method uses an HttpURLConnection to submit the
credit card information to the Acme Web server and return the reply to the verify() or
charge() method. The HttpURLConnection may have been disconnected automatically
by the container -- this might occur if, for example, a lot of time elapsed since its last use --
so the post() method always invokes the connect() method, which does nothing if the
connection is already established. The verify() and charge() methods parse the return
value looking for the substring "approved," which indicates that the credit card was not
denied. If "approved" was not found, it's assumed that the card was denied and a business
exception is thrown.

The setSessionContext() method provides the bean instance with a reference to the
SessionContext, which serves the same purpose as the EntityContext did for the
CustomerBean in the panel on . The SessionContext is not used in this example.

The ejbActivate() and ejbPassivate() methods are not implemented in the
CreditService bean because passivation is not used in stateless session beans. These
methods are defined in the javax.ejb.SessionBean interface for the stateful session
beans, and so an empty implementation must be provided in stateless session beans.
Stateless session bean will never provide anything but empty implementations of these
methods.

Stateless session beans can also be used to access the database as well as coordinate the
interaction of other beans to accomplish a task. Below is the definition of the HotelClerkBean
shown earlier in this tutorial:

import javax.ejb.SessionBean;
import javax.naming.InitialContext;

public interface HotelClerkBean implements SessionBean {

InitialContext jndiContext;

public void ejbCreate() {}

public void reserveRoom(Customer cust, RoomInfo ri,
Date from, Date to) {

CreditCard card = cust.getCreditCard();

RoomHome roomHome = (RoomHome)
getHome("java:comp/env/ejb/RoomEJB", RoomHome.class);
Room room = roomHome.findByPrimaryKey(ri.getID());
double amount = room.getPrice(from,to);

CreditServiceHome creditHome =
(CreditServiceHome) getHome(

"java:comp/env/ejb/CreditServiceEJB",
CreditServiceHome.class);

CreditService creditAgent = creditHome.create();
creditAgent.verify(card, amount);

ReservationHome resHome =
(ReservationHome) getHome(

"java:comp/env/ejb/ReservationEJB",
ReservationHome.class);

Reservation reservation = resHome.create(cust.getName(),
room,from,to);

}

public RoomInfo[] availableRooms(Location loc,
Date from, Date to) {

// do a SQL call to find available rooms
Connection con = db.getConnection();
Statement stmt = con.createStatement();

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 33

http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/ejb/SessionBean.html

ResultSet results = stmt.executeQuery("SELECT ...");
...
return roomInfoArray;

}

private Object getHome(String path, Class type) {
Object ref = jndiContext.lookup(path);
return PortableRemoteObject.narrow(ref,type);

}
}

The HotelClerkBean is also a stateless bean. All the information needed to process a
reservation or to query a list of available rooms is obtained from the method arguments. In
the reserveRoom() method, operations on several other beans (Room, CreditService, and
Reservation) are coordinated to accomplish one larger task, reserving a room for a customer.
This is an example of a session bean managing the interactions of other beans on behalf of
the client. The availableRooms() method is used to query the database and obtain a list
of rooms -- the information is returned to the client as a collection of data wrappers defined
by the RoomInfo class. The use of this class, shown below, is a design pattern that provides
the client with a light-weight wrapper of just the information needed:

public class RoomInfo {
public int id;
public int bedCount;
public boolean smoking;

}

To obtain a reference to another bean, as is done three times in the reserveRoom()
method, the private getHome() helper method is used. The getHome() method uses the
JNDI ENC to obtain references to other beans:

private Object getHome(String path, Class type) {
Object ref = jndiContext.lookup(path);
return PortableRemoteObject.narrow(ref,type);

}

In the EJB 1.1 specification, RMI over IIOP is the specified programming model, so CORBA
references types must be supported. CORBA references cannot be cast using Java
language native casting. Instead the PortableRemoteObject.narrow() method must be
used to explicitly narrow a reference from one type to its subtype. Because JNDI always
returns an Object type, all bean references should be explicitly narrowed to support
portability between containers.

Exercise
Exercise 3. How to create a stateless session bean: Tasks on page 45

Stateful session beans
Stateful session beans are dedicated to one client and maintain conversational state
between method invocations. Unlike stateless session beans, clients do not share stateful
beans. When a client creates a stateful bean, that bean instance is dedicated to service only
that client. This makes it possible to maintain conversational state, which is business state
that can be shared by methods in the same stateful bean.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 34

As an example, the HotelClerk bean can be modified to be a stateful bean which can
maintain conversational state between method invocations. This would be useful, for
example, if you want the HotelClerk bean to be able to take many reservations, but then
process them together under one credit card. This occurs frequently, when families need to
reserve two or more rooms or when corporations reserve a block of rooms for some event.
Below the HotelClerkBean is modified to be a stateful bean:

import javax.ejb.SessionBean;
import javax.naming.InitialContext;

public class HotelClerkBean implements SessionBean {

InitialContext jndiContext;

//conversational-state
Customer cust;
Vector resVector = new Vector();

public void ejbCreate(Customer customer) {}
cust = customer;

}

public void addReservation(Name name, RoomInfo ri,
Date from, Date to) {

ReservationInfo resInfo =
new ReservationInfo(name,ri,from,to);

resVector.addElement(resInfo);
}

public void reserveRooms() {
CreditCard card = cust.getCreditCard();
Enumeration resEnum = resVector.elements();

while (resEnum.hasMoreElements()) {

ReservationInfo resInfo =
(ReservationInfo) resEnum.nextElement();

RoomHome roomHome = (RoomHome)
getHome("java:comp/env/ejb/RoomEJB", RoomHome.class);
Room room =

roomHome.findByPrimaryKey(resInfo.roomInfo.getID());
double amount = room.getPrice(resInfo.from,restInfo.to);

CreditServiceHome creditHome = (CreditServiceHome)
getHome("java:comp/env/ejb/CreditServiceEJB",

CreditServiceHome.class);
CreditService creditAgent = creditHome.create();
creditAgent.verify(card, amount);

ReservationHome resHome = (ReservationHome)
getHome("java:comp/env/ejb/ReservationEJB",

ReservationHome.class);
Reservation reservation =
resHome.create(resInfo.getName(),
resInfo.roomInfo,resInfo.from,resInfo.to);

}

public RoomInfo[] availableRooms(Location loc,
Date from, Date to) {

// Make an SQL call to find available rooms
}

private Object getHome(String path, Class type) {
Object ref = jndiContext.lookup(path);
return PortableRemoteObject.narrow(ref,type);

}
}

In the stateful version of the HotelClerkBean class, the conversational state is the

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 35

Customer reference, which is obtained when the bean is created, and the Vector of
ReservationInfo objects. By maintaining the conversational state in the bean, the client is
absolved of the responsibility of keeping track of this session state. The bean keeps track of
the reservations and processes them in a batch when the serverRooms() method is
invoked.

To conserve resources, stateful session beans may be passivated when they are not in use
by the client. Passivation in stateful session beans is different than for entity beans. In
stateful beans, passivation means the bean conversational-state is written to a secondary
storage (often disk) and the instance is evicted from memory. The client's reference to the
bean is not affected by passivation; it remains alive and usable while the bean is passivated.
When the client invokes a method on a bean that is passivated, the container will activate the
bean by instantiating a new instance and populating its conversational state with the state
written to secondary storage. This passivation/activation process is often accomplished using
simple Java serialization but it can be implemented in other proprietary ways as long as the
mechanism behaves the same as normal serialization. (One exception to this is that transient
fields do not need to be set to their default initial values when a bean is activated.)

Stateful session beans, unlike stateless beans, do use the ejbActivate() and
ejbPassivate() methods. The container will invoke these methods to notify the bean
when it's about to be passivated (ejbPassivate()) and immediately following activation
ejbActivate()). Bean developers should use these methods to close open resources and
to do other clean-up before the instance's state is written to secondary storage and evicted
from memory.

The ejbRemove() method is invoked on the stateful instance when the client invokes the
remove() method on the home or remote interface. The bean should use the
ejbRemove() method to do the same kind of clean-up performed in the ejbPassivate()
method.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 36

http://java.sun.com/products/jdk/1.2/docs/api/java/util/Vector.html

Section 6. Deploying EJB technology

Introduction
As mentioned previously, the container handles persistence, transactions, concurrency, and
access control automatically for the enterprise beans. The EJB specification describes a
declarative mechanism for how these things will be handled, through the use of an XML
deployment descriptor. When a bean is deployed into a container, the container reads the
deployment descriptor to find out how transaction, persistence (entity beans), and access
control should be handled. The person deploying the bean will use this information and
specify additional information to hook the bean up to these facilities at run time.

A deployment descriptor has a predefined format that all EJB-compliant beans must use and
all EJB-compliant servers must know how to read. This format is specified in an XML
Document Type Definition, or DTD. The deployment descriptor describes the type of bean
(session or entity) and the classes used for the remote, home, and bean class. It also
specifies the transactional attributes of every method in the bean, which security roles can
access each method (access control), and whether persistence in the entity beans is handled
automatically or is performed by the bean. Below is an example of a XML deployment
descriptor used to describe the Customer bean:

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

<ejb-jar>
<enterprise-beans>
<entity>
<description>
This bean represents a customer

</description>
<ejb-name>CustomerBean</ejb-name>
<home>CustomerHome</home>
<remote>Customer</remote>
<ejb-class>CustomerBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>Integer</prim-key-class>
<reentrant>False</reentrant>

<cmp-field><field-name>myAddress</field-name></cmp-field>
<cmp-field><field-name>myName</field-name></cmp-field>
<cmp-field><field-name>myCreditCard</field-name></cmp-field>

</entity>
</enterprise-beans>

<assembly-descriptor>
<security-role>
<description>
This role represents everyone who is allowed full access
to the Customer bean.

</description>
<role-name>everyone</role-name>

</security-role>

<method-permission>
<role-name>everyone</role-name>
<method>
<ejb-name>CustomerBean</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>

<container-transaction>
<description>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 37

All methods require a transaction
</description>
<method>
<ejb-name>CustomerBean</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
</assembly-descriptor>

</ejb-jar>

EJB-capable application servers usually provide tools that can be used to build the
deployment descriptors; this greatly simplifies the process.

When a bean is to be deployed, its remote, home, and bean class files and the XML
deployment descriptor must be packaged into a jar file. The deployment descriptor must be
stored in the jar under the special name META-INF/ejb-jar.xml. This jar file, called an
ejb-jar, is vendor neutral; it can be deployed in any EJB container that supports the complete
EJB specification. When a bean is deployed in an EJB container, its XML deployment
descriptor is read from the jar to determine how to manage the bean at run time. The person
deploying the bean will map attributes of the deployment descriptor to the container's
environment. This will include mapping access security to the environment's security system,
adding the bean to the EJB container's naming system, and so on. Once the bean developer
has finished deploying the bean, it will become available for client applications and other
beans to use.

Exercises
Exercise 4. How to set up the database: Tasks on page 47

Exercise 5. How to deploy enterprise beans in Sun's J2EE Reference Implementation: Tasks
on page 49

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 38

Section 7. Enterprise JavaBeans clients

Introduction
Enterprise JavaBeans clients may be stand-alone applications, servlets, applets, or even
other enterprise beans. For instance, the HotelClerk session bean shown earlier was a client
of the Room entity beans. All clients use the server bean's home interface to obtain
references to the server bean. This reference has the server bean's remote interface
datatype, therefore the client interacts with the server bean solely through the methods
defined in the remote interface.

The remote interface defines the business methods, such as accessor and mutator methods
for changing a customer's name, or business methods that perform tasks like using the
HotelClerk bean to reserve a room at a hotel. Below is an example of how a Customer bean
might be accessed from a client application. In this case the home interface is
CustomerHome and the remote interface is Customer.

CustomerHome home;
Object ref;

// Obtain a reference to the CustomerHome
ref = jndiContext.lookup("java:comp/env/ejb/Customer");

// Cast object returned by the JNDI lookup to the
// appropriate datatype
home = PortableRemoteObject.narrow(ref, CustomerHome.class);

// Use the home interface to create a
// new instance of the Customer bean.
Customer customer = home.create(customerID);

// Use a business method on the Customer.
customer.setName(someName);

A client first obtains a reference to the home interface by using JNDI ENC to look up the
server beans. In EJB 1.1, Java RMI-IIOP is the specified programming model. As a
consequence, all CORBA references types must be supported. CORBA references cannot
be cast using Java native casting. Instead the PortableRemoteObject.narrow()
method must be used to explicitly narrow a reference from one type to its subtype. Because
JNDI always returns an Object type, all bean references should be explicitly narrowed to
support portability between containers.

After the home interface is obtained, the client uses the methods defined on the home
interface to create, find, or remove the server bean. Invoking one of the create() methods
on the home interface returns to the client a remote reference to the server bean, which the
client uses to perform its job.

Exercise
Exercise 6. How to create EJB clients: Tasks on page 55

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 39

http://java.sun.com/products/jdk/1.2/docs/api/java/lang/Object.html

Section 8. Exercises

About the exercises
These exercises are designed to provide help according to your needs. For example, you
might simply complete the exercise given the information and the task list in the exercise
body; you might want a few hints; or you may want a step-by-step guide to successfully
complete a particular exercise. You can use as much or as little help as you need per
exercise. Moreover, because complete solutions are also provided, you can skip a few
exercises and still be able to complete future exercises requiring the skipped ones.

Each exercise has a list of any prerequisite exercises, a list of skeleton code for you to start
with, links to necessary API pages, and a text description of the exercise goal. In addition,
there is a help page, with help for each task, and a solution page with links to files that
comprise a solution to the exercise.

Exercise 1. How to install and configure Sun's J2EE
Reference Implementation: Tasks
This exercise steps you through the process of downloading and installing Sun's Java 2
Enterprise Edition Reference Implementation application server on your machine. This
exercise is specific to the J2EE RI. If you want to use a different application server for the
remainder of these exercises, then you should ensure it is EJB 1.1 compliant and install it
now.

For more help with exercises, see About the exercises on page 40 .

Prerequisites
* None

Task 1: Check your system requirements to make sure you have an adequate hardware and
software platform for installing and running J2EE RI.

Task 2: Ensure you have the Java 2 SDK version 1.2.2 or higher installed on your machine.

Task 3: Download the J2EE RI server and documentation from Sun's J2EE download site .
The software distribution and the documentation site include installation instructions.

Task 4: Run the installer for both the J2EE and the documentation.

Task 5: Set the J2EE_HOME environment variable to point to the base directory where you
installed the J2EE RI.

Task 6: Put J2EE_HOME/bin into your PATH environment variable.

Task 7: Start the Cloudscape database with the command

cloudscape -start

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 40

http://java.sun.com/j2ee/j2sdkee/
http://java.sun.com/j2ee/j2sdkee/
http://java.sun.com/j2ee/j2sdkee/
http://java.sun.com/j2ee/j2sdkee/
http://java.sun.com/j2ee/j2sdkee/techdocs/index.html
http://java.sun.com/j2ee/j2sdkee/techdocs/index.html
http://java.sun.com/j2ee/j2sdkee/techdocs/index.html

Task 8: Start the J2EE RI with the command

j2ee -verbose

Task 9: J2EE is now installed and running. Explore the J2EE Reference Implementation
documentation within the documentation site to familiarize yourself more with J2EE.

Help for each of these tasks can be found on the next panel.

Exercise 1. How to install and configure Sun's J2EE
Reference Implementation: Help
Task 1: Check your system requirements to make sure you have an adequate hardware and
software platform for installing and running J2EE RI.

Help for task 1: System requirements are Windows NT 4.0 or Solaris 2.5.1+. Windows 2000
and Windows 98 also are reported to work, but Sun does not yet officially support them. A
minimum of 128 MB of RAM is needed to adequately complete the exercises.

Visit Sun's Web page, which lists J2EE Reference Implementation Tested Configurations for
more information.

Task 2: Ensure you have the Java 2 SDK version 1.2.2 or higher installed on your machine.

Help for task 2: The J2EE RI cannot run without the full Java 2 SDK installed. The J2EE RI
cannot run if the HotSpot performance engine has been installed on top of the SDK; if
HotSpot has been installed, be sure to uninstall then reinstall the Java 2 SDK.

Task 3: Download the J2EE RI server and documentation from Sun's J2EE download site .
The software distribution and the documentation site include installation instructions.

Help for task 3: The Windows and Solaris distributions are each approximately 11 MB. The
documentation is an additional 7 MB.

Task 4: Run the installer for both the J2EE and the documentation.

Help for task 4: Double click on the installer that you downloaded in the previous step.

Task 5: Set the J2EE_HOME environment variable to point to the base directory where you
installed the J2EE RI.

Help for task 5: In Windows, this may be done by the command:

set J2EE_HOME=C:\j2sdkee

Make sure to point to the proper folder for your machine.

Task 6: Put J2EE_HOME/bin into your PATH environment variable.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 41

http://java.sun.com/j2ee/j2sdkee/techdocs/index.html
http://java.sun.com/j2ee/j2sdkee/techdocs/index.html
http://java.sun.com/j2ee/ri_tested.html
http://java.sun.com/j2ee/ri_tested.html
http://java.sun.com/j2ee/ri_tested.html
http://java.sun.com/j2ee/ri_tested.html
http://java.sun.com/j2ee/ri_tested.html
http://java.sun.com/j2ee/j2sdkee/
http://java.sun.com/j2ee/j2sdkee/
http://java.sun.com/j2ee/j2sdkee/
http://java.sun.com/j2ee/j2sdkee/
http://java.sun.com/j2ee/j2sdkee/techdocs/index.html
http://java.sun.com/j2ee/j2sdkee/techdocs/index.html
http://java.sun.com/j2ee/j2sdkee/techdocs/index.html

Help for task 6: In Windows, this may be done by the command:

set PATH=%PATH%;C:\j2sdkee\bin

Make sure to point to the proper folder for your machine.

Task 7: Start the Cloudscape database with the command

cloudscape -start

Help for task 7: cloudscape -start should produce output similar to the following:

myhost> cloudscape -start
Wed Jan 12 11:51:20 PST 2000:

[RmiJdbc] COM.cloudscape.core.JDBCDriver
registered in DriverManager

Wed Jan 12 11:51:20 PST 2000:
[RmiJdbc] Binding RmiJdbcServer...

Wed Jan 12 11:51:20 PST 2000:
[RmiJdbc] No installation of RMI Security Manager...

Wed Jan 12 11:51:22 PST 2000:
[RmiJdbc] RmiJdbcServer bound in rmi registry

Task 8: Start the J2EE RI with the command

j2ee -verbose

Help for task 8: Running the J2EE RI via the command-line command j2ee -verbose
should produce output similar to the following:

myhost> j2ee -verbose

Naming service started: :1050
Published the configuration object ...
Binding DataSource, name = jdbc/Cloudscape,

url = jdbc:cloudscape:rmi:CloudscapeDB;create=true
Configuring web service using "default"
Web service started: :9191
Web service started: :7000
Configuring web service using "default"
Configuring web service using
"file:/D:/j2sdkee1.2/public_html/WEB-INF/web.xml"

Web service started: :8000
Endpoint [SSL:
ServerSocket[addr=0.0.0.0/0.0.0.0,port=0,localport=7000]]
shutdown due to exception:
javax.net.ssl.SSLException: No available certificate corresponds

to the SSL cipher suites which are enabled.
endpoint down: :7000
J2EE server startup complete.

Task 9: J2EE is now installed and running. Explore the J2EE Reference Implementation
documentation within the documentation site to familiarize yourself more with J2EE.

Help for task 9: There is extensive documentation on all aspects of J2EE, along with
example enterprise beans API documentation for the javax.ejb packages, and other
goodies.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 42

http://java.sun.com/j2ee/j2sdkee/techdocs/index.html
http://java.sun.com/j2ee/j2sdkee/techdocs/index.html

Exercise 1. How to install and configure Sun's J2EE
Reference Implementation: Solution
There is no solution to this exercise. When the tasks in this exercise have been completed,
the J2EE RI will be installed, running, and available for the subsequent exercises.

Exercise 2. How to create an entity bean: Tasks
This exercise implements a MusicCD entity bean, which represents data stored in a
database describing an audio CD. The MusicCD bean will be used by subsequent exercises.

For more help with exercises, see About the exercises on page 40 .

Prerequisites
* Exercise 1. How to install and configure Sun's J2EE Reference Implementation: Tasks

on page 40

Skeleton code
* MusicCD.java
* MusicCDHome.java
* MusicCDBean.java

Task 1: Design a MusicCD remote interface and a MusicCDHome home interface. The
MusicCD bean must encapsulate the persistent fields upc, title, artist, type, and
price, so the MusicCD remote interface should define accessors and mutators for these
persistent fields. The MusicCDHome interface should define a findByPrimaryKey()
method which accepts a String argument for the upc, and a create() method that
accepts a upc.

Task 2: Code the MusicCDBean entity bean implementation class. You need to provide
implementations for all the methods defined in the remote interface, plus you need to
implement all the methods defined in the EntityBean interface. You also need to provide
an implementation of ejbCreate() with the same number and datatypes of arguments as
you defined in the create() method of your home interface.

Task 3: Compile all the classes that make up your bean.

Task 4: Package your entity bean into a jar file, using the provided XML deployment
descriptor.

Help for each of these tasks can be found on the next panel.

Exercise 2. How to create an entity bean: Help
Task 1: Design a MusicCD remote interface and a MusicCDHome home interface. The
MusicCD bean must encapsulate the persistent fields upc, title, artist, type, and

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 43

exercises/EntityBean/MusicCD.java
exercises/EntityBean/MusicCDHome.java
exercises/EntityBean/MusicCDBean.java

price, so the MusicCD remote interface should define accessors and mutators for these
persistent fields. The MusicCDHome interface should define a findByPrimaryKey()
method which accepts a String argument for the upc, and a create() method that
accepts a upc.

Help for task 1: Remember that all of the methods in the remote interface must throw
RemoteException and that the create() methods in the home interface must return an
object of type MusicCD.

Task 2: Code the MusicCDBean entity bean implementation class. You need to provide
implementations for all the methods defined in the remote interface, plus you need to
implement all the methods defined in the EntityBean interface. You also need to provide
an implementation of ejbCreate() with the same number and datatypes of arguments as
you defined in the create() method of your home interface.

Help for task 2: MusicCDHome should prescribe a single bean-creation method with the
signature:

public MusicCD create(String upc)
throws CreateException, RemoteException;

but the implementation of this in the bean class must return null in the case of
container-managed persistence.

Because MusicCDBean is an implementation of an entity bean, it has a primary key and it
must have creation methods with arguments to initialize the key: create() and
ejbCreate().

Task 3: Compile all the classes that make up your bean.

Help for task 3: Don't forget that the compiler needs to be able to find the javax.ejb
classes, which are in J2EE_HOME/j2ee.jar. You may use the following command to
compile:

javac -classpath %CLASSPATH%;%J2EE_HOME%\lib\j2ee.jar;. musicstore*.java

Task 4: Package your entity bean into a jar file, using the provided XML deployment
descriptor.

Help for task 4: Execute the command:

jar cvf MusicCD.jar musicstore*.class META-INF\ejb-jar.xml

to create the jar file.

Exercise 2. How to create an entity bean: Solution
The following files contain a complete implementation of the MusicCD entity bean:

* solution/musicstore/MusicCD.java
* solution/musicstore/MusicCDHome.java

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 44

exercises/EntityBean/solution/musicstore/MusicCD.java
exercises/EntityBean/solution/musicstore/MusicCDHome.java

* solution/musicstore/MusicCDBean.java
* solution/META-INF/ejb-jar.xml

Exercise 3. How to create a stateless session bean:
Tasks
This exercise implements an Inventory session bean, which can perform inventory
operations via the MusicCD bean, with both beans operating in the middle-tier.
Inventory-management operations are initiated by a distributed client,
MusicInventoryClient.

For more help with exercises, see About the exercises on page 40 .

Prerequisites
* Exercise 1. How to install and configure Sun's J2EE Reference Implementation: Tasks

on page 40
* Exercise 2. How to create an entity bean: Tasks on page 43

Skeleton code
* Inventory.java
* InventoryHome.java
* InventoryBean.java
* MusicData.java

Task 1: Design a wrapper class called MusicData, that can represent the persistent fields
in MusicCD (namely upc, title, artist, type, price).

Task 2: Design an Inventory session bean that provides an addInventory() service.
This argument should take an array of MusicData objects as an argument. Within the
addInventory() method, this bean should establish a MusicCDHome reference and then
loop through the data passed as an argument to addInventory(), creating MusicCD
beans and setting their attributes.

Task 3: Compile all the classes that make up your bean.

Task 4: Package your session bean into a jar file, using the provided XML deployment
descriptor.

Help for each of these tasks can be found on the next panel.

Exercise 3. How to create a stateless session bean:
Help
Task 1: Design a wrapper class called MusicData, that can represent the persistent fields
in MusicCD (namely upc, title, artist, type, price).

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 45

exercises/EntityBean/solution/musicstore/MusicCDBean.java
exercises/EntityBean/solution/META-INF/ejb-jar.xml
exercises/SessionBean/Inventory.java
exercises/SessionBean/InventoryHome.java
exercises/SessionBean/InventoryBean.java
exercises/SessionBean/MusicData.java

Help for task 1: Don't forget to implement java.io.Serializable.

MusicData should provide a constructor for setting its instance fields with the MusicCD
attributes:

...
public MusicData(String upc, String title,

String artist, String type, float price) {
this.upc = upc;
this.title = title;
this.artist = artist;
this.type = type;
this.price = price;

}
...

Task 2: Design an Inventory session bean that provides an addInventory() service.
This argument should take an array of MusicData objects as an argument. Within the
addInventory() method, this bean should establish a MusicCDHome reference and then
loop through the data passed as an argument to addInventory(), creating MusicCD
beans and setting their attributes.

Help for task 2: InventoryHome should prescribe a single bean-creation method with the
signature:

public Inventory create() throws CreateException, RemoteException;

Inventory should prescribe one method only, addInventory(), with an interface similar
to the following, depending on your design:

public boolean addInventory(MusicData[] data)
throws RemoteException;

Because Inventory is a session bean, it has no primary key and its creation methods have
no arguments: create() and ejbCreate().

Note that InventoryBean.addInventory() is similar to MusicClient in that it must
establish a JNDI context, look up the MusicCD bean, and so on.

Task 3: Compile all the classes that make up your bean.

Help for task 3: Don't forget that the compiler needs to be able to find the javax.ejb
classes, which are in J2EE_HOME/j2ee.jar. You may use the following command to
compile:

javac -classpath %CLASSPATH%;%J2EE_HOME%\lib\j2ee.jar;. musicstore*.java

Task 4: Package your session bean into a jar file, using the provided XML deployment
descriptor.

Help for task 4: Execute the command:

jar cvf Inventory.jar musicstore*.class META-INF\ejb-jar.xml

to create the jar file.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 46

Exercise 3. How to create a stateless session bean:
Solution
The following files contain a complete implementation of the Inventory session bean:

* solution/musicstore/Inventory.java
* solution/musicstore/InventoryHome.java
* solution/musicstore/InventoryBean.java
* solution/musicstore/MusicData.java
* solution/META-INF/ejb-jar.xml

Exercise 4. How to set up the database: Tasks
As illustrated in the previous exercises, the database has a music store theme. This exercise
sets up the database with one table for music CDs. This exercise includes a pre-built
database for the Cloudscape database system in jar format.

Also, the skeleton code and solutions sections include programs for building the database via
JDBC. Note that all utility programs associated with this project have -usage, -help, and
-h command-line options.

For more help with exercises, see About the exercises on page 40 .

Prerequisites
* Exercise 1. How to install and configure Sun's J2EE Reference Implementation: Tasks

on page 40

Resources
* DatabaseTool.java
* MusicStoreDB.jar
* MusicCDCreateTables.java
* MusicCDInsertRecords.java

Task 1: Choose a database system appropriate for your environment and then either install
or build the database system with the music data that you prefer.

Task 2: Verify the integrity of the database using a vendor-supplied graphical tool or the
DatabaseTool.java program provided.

Help for each of these tasks can be found on the next panel.

Exercise 4. How to set up the database: Help
Task 1: Choose a database system appropriate for your environment and then either install
or build the database system with the music data that you prefer.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 47

exercises/SessionBean/solution/musicstore/Inventory.java
exercises/SessionBean/solution/musicstore/InventoryHome.java
exercises/SessionBean/solution/musicstore/InventoryBean.java
exercises/SessionBean/solution/musicstore/MusicData.java
exercises/SessionBean/solution/META-INF/ejb-jar.xml
exercises/DatabaseCreation/DatabaseTool.java
exercises/DatabaseCreation/MusicStoreDB.jar
exercises/DatabaseCreation/MusicCDCreateTables.java
exercises/DatabaseCreation/MusicCDInsertRecords.java

Help for task 1: Sun's J2EE Reference Implementation comes with a built-in version of the
Cloudscape RDBMS. If you are using J2EE RI, you should initially use Cloudscape as your
database to avoid configuration problems. You can learn how to substitute a different
database after you become comfortable with creating and deploying applications using
Cloudscape.

If you insist on initially using a database other than Cloudscape, you should carefully read
and follow the instructions in the following J2EE RI documentation before you begin:

* Configuration Guide
* Release Notes

Note that Microsoft Access doesn't provide adequate SQL support for the tasks required by
EJB technology servers.

For Cloudscape, simply copy the MusicStoreDB.jar archive into the directory
%J2EE_HOME%\cloudscape and then unjar the database. (All files unjar into the directory
MusicStoreDB within the current working directory.)

For other database environments, simply compile and run the programs
MusicCDCreateTables.java and MusicCDInsertRecords.java after creating an
empty database. You can modify the source for the appropriate driver and URL values, or
supply them as command-line options. You can also perform these tasks using
DatabaseTool, or JDBCTest (TestTool) from the Sun's JDBC area .

One last step is needed when running with J2EE RI: You need to modify the
%J2EE_HOME%\config\default.properties file to define the datasources available to
J2EE RI. This is done by changing the line that reads (with everything on one line):

jdbc.datasources=jdbc/Cloudscape|
jdbc:cloudscape:rmi:CloudscapeDB;create=true

to be:

jdbc.datasources=jdbc/Cloudscape|
jdbc:cloudscape:rmi:CloudscapeDB;create=true|
jdbc/MusicStore|jdbc:cloudscape:rmi:MusicStoreDB;create=false

(with everything on one line) and then restarting both Cloudscape and J2EE RI.

Barnes and Noble and other sites provide easy access to music CD data such as UPCs, if
you want to customize the MusicCD database with your own entries.

Task 2: Verify the integrity of the database using a vendor-supplied graphical tool or the
DatabaseTool.java program provided.

Help for task 2: The exercise solution on the next panel has example output for the
Cloudscape View tool and for DatabaseTool.java.

Exercise 4. How to set up the database: Solution
There is no explicit solution to this exercise. If you have set up the database correctly, then

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 48

http://java.sun.com/j2ee/j2sdkee/techdocs/release/ConfigGuide.html#12442
http://java.sun.com/j2ee/j2sdkee/techdocs/release/ConfigGuide.html#12442
http://java.sun.com/j2ee/j2sdkee/techdocs/release/ReleaseNotes.html#9704
http://java.sun.com/j2ee/j2sdkee/techdocs/release/ReleaseNotes.html#9704
http://java.sun.com/products/JDBC/prodtour.html
http://java.sun.com/products/JDBC/prodtour.html
http://java.sun.com/products/JDBC/prodtour.html
http://music.barnesandnoble.com
http://music.barnesandnoble.com
http://music.barnesandnoble.com

when you run cloudscape -start you will see output similar to the following:

myhost> cloudscape -start
Wed Jan 12 11:51:20 PST 2000:

[RmiJdbc] COM.cloudscape.core.JDBCDriver registered
in DriverManager

Wed Jan 12 11:51:20 PST 2000:
[RmiJdbc] Binding RmiJdbcServer...

Wed Jan 12 11:51:20 PST 2000:
[RmiJdbc] No installation of RMI Security Manager...

Wed Jan 12 11:51:22 PST 2000:
[RmiJdbc] RmiJdbcServer bound in rmi registry

Likewise, when you startup J2EE RI you should see something like the following:

myhost> j2ee -verbose

Naming service started: :1050
Published the configuration object ...
Binding DataSource, name = jdbc/Cloudscape,

url = jdbc:cloudscape:rmi:CloudscapeDB;create=true
Binding DataSource, name = jdbc/MusicStore,

url = jdbc:cloudscape:rmi:MusicStoreDB;create=false
Configuring web service using "default"
Web service started: :9191
Web service started: :7000
Configuring web service using "default"
Configuring web service using
"file:/D:/j2sdkee1.2/public_html/WEB-INF/web.xml"

Web service started: :8000
Endpoint [SSL:
ServerSocket[addr=0.0.0.0/0.0.0.0,port=0,localport=7000]]
shutdown due to exception:
javax.net.ssl.SSLException: No available certificate corresponds

to the SSL cipher suites which are enabled.
endpoint down: :7000
J2EE server startup complete.

Exercise 5. How to deploy enterprise beans in Sun's
J2EE Reference Implementation: Tasks
This exercise takes you through the process of deploying the MusicCD entity bean and
Inventory session bean into the J2EE Reference Implementation container. Deploying is
usually a major task in and of itself, and it is always application-server specific. If you are
using an application server other than J2EE RI, you should consult that server's
documentation for the details of how to deploy your beans. You will need to have the
MusicCD and Inventory beans deployed for the subsequent exercises.

For more help with exercises, see About the exercises on page 40 .

Prerequisites
* Exercise 1. How to install and configure Sun's J2EE Reference Implementation: Tasks

on page 40
* Exercise 2. How to create an entity bean: Tasks on page 43
* Exercise 3. How to create a stateless session bean: Tasks on page 45
* Exercise 4. How to set up the database: Tasks on page 47

Skeleton code

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 49

* Inventory.jar
* MusicCD.jar

Task 1: Save the two jar files from the skeleton code section above into your working
directory. From that working directory, start the deploytool utility. This runs an application
for deploying enterprise beans into a running J2EE RI server.

Task 2: In deploytool, select File/New Application... to create a new application called
MusicStore saved in a file called MusicStore.ear.

Task 3: Select the MusicStore application from the list of deployed applications on the left
side of the deploytool GUI. Select File/Add EJB JAR to Application... and use the dialog
box to open MusicCD.jar, which is provided as the skeleton code for this exercise.

Task 4: Follow the same procedure to add the Inventory.jar to the application.

Task 5: With the MusicStore application selected, choose the JNDI panel from the main
portion of the deploytool window. Fill in the JNDI names for each component as shown:

MusicCDBean MusicCDBean ejb/MusicCD
InventoryBean InventoryBean ejb/Inventory
InventoryBean ejb/MusicCD ejb/MusicCD

Task 6: Now set up the database mapping for the MusicCD entity bean. You will have to
select the MusicCDBean component from the left window. Then select the Entity tab in the
main window and click the Deployment Settings button to get the input dialog box. Set the
database JNDI name to jdbc/MusicStore in this dialog, uncheck the boxes Create table on
deploy and Delete table on deploy, then click the Generate SQL now button.

Task 7: The MusicStoreDB that you set up in the previous exercise uses a table called
MusicCD to store the MusicCD beans. The SQL commands that the J2EE RI automatically
generates do not use this exact table name, so you need to select each of the life-cycle
methods and edit the SQL being generated for each to change them to operate on the
MusicCD table.

Task 8: In deploytool, select Tools/Deploy Application... from the menu. Check the box
to Return Client Jar, accept all the other defaults, and step through the wizard. Click the
Finish button at the end.

Task 9: You should see MusicStore application show up in the lower section of the
deploytool screen in the panel labeled Server Applications. You have successfully
deployed your beans.

Help for each of these tasks can be found on the next panel.

Exercise 5. How to deploy enterprise beans in Sun's
J2EE Reference Implementation: Help
Task 1: Save the two jar files from the skeleton code section above into your working

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 50

exercises/DeployingJ2EERI/Inventory.jar
exercises/DeployingJ2EERI/MusicCD.jar

directory. From that working directory, start the deploytool utility. This runs an application
for deploying enterprise beans into a running J2EE RI server.

Help for task 1: First make sure that your J2EE RI server and database server are running.
If they aren't, execute cloudscape -start and j2ee -verbose from the command-line.
You will need the J2EE_HOME/bin directory in your PATH. Then you can run deploytool
from the command-line. This should bring up the following screen:

Task 2: In deploytool, select File/New Application... to create a new application called
MusicStore saved in a file called MusicStore.ear.

Help for task 2: The left portion of the deploytool GUI should now show MusicStore as
an application:

Task 3: Select the MusicStore application from the list of deployed applications on the left
side of the deploytool GUI. Select File/Add EJB JAR to Application... and use the dialog
box to open MusicCD.jar, which is provided as the skeleton code for this exercise.

Help for task 3: The left portion of the deploytool GUI should now show MusicCDEJB
beneath the MusicStore application as shown here:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 51

Task 4: Follow the same procedure to add the Inventory.jar to the application.

Help for task 4: The left portion of the deploytool GUI should now show MusicCDEJB
and InventoryEJB beneath the MusicStore application as shown here:

Task 5: With the MusicStore application selected, choose the JNDI panel from the main
portion of the deploytool window. Fill in the JNDI names for each component as shown:

MusicCDBean MusicCDBean ejb/MusicCD
InventoryBean InventoryBean ejb/Inventory
InventoryBean ejb/MusicCD ejb/MusicCD

Help for task 5: You should see a list of three component with blank JNDI names. Fill in the
names as shown here:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 52

Task 6: Now set up the database mapping for the MusicCD entity bean. You will have to
select the MusicCDBean component from the left window. Then select the Entity tab in the
main window and click the Deployment Settings button to get the input dialog box. Set the
database JNDI name to jdbc/MusicStore in this dialog, uncheck the boxes Create table on
deploy and Delete table on deploy, then click the Generate SQL now button.

Help for task 6: The Entity tab will appear as follows:

jdbc/MusicStore is the JNDI name of the database you set up in the . If deploytool
complains about this database name, make sure you have completed the previous exercise
properly and that the J2EE RI server has been restarted since then (so that it will pick up the
database you created). After this is done, it should look something like this:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 53

Task 7: The MusicStoreDB that you set up in the previous exercise uses a table called
MusicCD to store the MusicCD beans. The SQL commands that the J2EE RI automatically
generates do not use this exact table name, so you need to select each of the life-cycle
methods and edit the SQL being generated for each to change them to operate on the
MusicCD table.

Help for task 7: See the help for the previous task to see what the screen should look like
when you edit the SQL commands.

Task 8: In deploytool, select Tools/Deploy Application... from the menu. Check the box
to Return Client Jar, accept all other defaults, and step through the wizard. Click the Finish
button at the end.

Help for task 8: After this is done, and if the deployment was successful, you should see a
dialog something like this:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 54

Task 9: You should see MusicStore application show up in the lower section of the
deploytool screen in the panel labeled Server Applications. You have successfully
deployed your beans.

Help for task 9: Note that the FCS version of J2EE RI has a bug that prevents the Server
Applications panel to be initially shown. Use your mouse and drag the divider bar which
appears along the bottom of the screen until this panel is visible. It should look something
like this:

Exercise 5. How to deploy enterprise beans in Sun's
J2EE Reference Implementation: Solution
When you have sucessfully deployed the MusicStore application, your deploytool screen
should look something like this:

Exercise 6. How to create EJB clients: Tasks
This exercise implements two stand-alone client applications to use the MusicCD entity
bean and Inventory session bean which you developed and deployed in the previous
exercises.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 55

Note: Due to a bug in the 1.0 release of the J2EE RI, these client programs will not run
properly. The J2EE RI does not conform to the J2EE specification regarding the use of
compound primary keys. The J2EE RI 1.0 only works properly with single-valued primary
keys. In order to make this exercise work with the J2EE RI, you will have to use the upc field
of the MusicCDBean class as the primary key and remove all mention of MusicCDPK in the
MusicCD entity bean, the Inventory session bean, and the clients in this exercise. This
bug will be fixed in the next J2EE RI release.

For more help with exercises, see About the exercises on page 40 .

Prerequisites
* Exercise 1. How to install and configure Sun's J2EE Reference Implementation: Tasks

on page 40
* Exercise 2. How to create an entity bean: Tasks on page 43
* Exercise 3. How to create a stateless session bean: Tasks on page 45
* Exercise 4. How to set up the database: Tasks on page 47
* Exercise 5. How to deploy enterprise beans in Sun's J2EE Reference Implementation:

Tasks on page 49

Skeleton code
* MusicClient.java
* MusicInventoryClient.java
* Inventory.jar
* MusicCD.jar

Task 1: Start the Cloudscape database server with the command:

cloudscape -start

Task 2: Start the J2EE RI with the command:

j2ee -verbose

Pay attention to the output to make sure that J2EE loads the MusicStoreDB datasource that
you set up in the previous exercise.

Task 3: Edit the MusicClient.java skeleton to obtain the JNDI context, and use this
context to get a reference to the MusicCDHome.

Task 4: Create a new MusicCD bean with the UPC code given in the skeleton, and set its
fields to the values shown in the skeleton. Or if you have a favorite CD of your own, you can
use that data.

Task 5: Add code to find the MusicCD bean you just created in the database, then print out
the database values of the fields you set in the previous step.

Task 6: Compile and run your client application.

Task 7: Edit the MusicInventoryClient.java skeleton to obtain the JNDI context, and
use this context to get a reference to the InventoryHome.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 56

exercises/Client/MusicClient.java
exercises/Client/MusicInventoryClient.java
exercises/Client/Inventory.jar
exercises/Client/MusicCD.jar

Task 8: Create a new Inventory bean.

Task 9: Create an instance of MusicData and fill it with information about CDs you want to
insert into the database, then use the Inventory bean's business method to perform this task.

Task 10: Compile and run your client application.

Help for each of these tasks can be found on the next panel.

Exercise 6. Creating EJB clients: Help
Task 1: Start the Cloudscape database server with the command:

cloudscape -start

Help for task 1: You may already have Cloudscape running from the previous exercise. If
so, there is no need to start it again (in fact, you can't have two copies running). When
shutting down Cloudscape, be sure to use cloudscape -stop instead of ^C.

Task 2: Start the J2EE RI with the command:

j2ee -verbose

Pay attention to the output to make sure that J2EE loads the MusicStoreDB datasource that
you set up in the previous exercise.

Help for task 2: Running the J2EE RI via the command-line command j2ee -verbose
should produce output similar to the following:

myhost> j2ee -verbose

Naming service started: :1050
Published the configuration object ...
Binding DataSource, name = jdbc/Cloudscape,

url = jdbc:cloudscape:rmi:CloudscapeDB;create=true
Binding DataSource, name = jdbc/MusicStore,

url = jdbc:cloudscape:rmi:MusicStoreDB;create=false
Configuring web service using "default"
Web service started: :9191
Web service started: :7000
Configuring web service using "default"
Configuring web service using

"file:/D:/j2sdkee1.2/public_html/WEB-INF/web.xml"
Web service started: :8000
Endpoint [SSL:

ServerSocket[addr=0.0.0.0/0.0.0.0,port=0,localport=7000]]
shutdown due to exception:
javax.net.ssl.SSLException: No available certificate corresponds

to the SSL cipher suites which are enabled.
endpoint down: :7000
Loading jar:/D:/j2sdkee1.2/repository/myhost/applications/

MusicStore947749297345Server.jar
/D:/j2sdkee1.2/repository/myhost/applications/

MusicStore947749297345Server.jar
Looking up authenticator...
Binding name:java:comp/env/ejb/MusicCD
J2EE server startup complete.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 57

Note in particular the lines:
Binding DataSource, name = jdbc/MusicStore,

url = jdbc:cloudscape:rmi:MusicStoreDB;create=false

that let you know that the MusicStore database is known to the J2EE server, and
Loading jar:/D:/j2sdkee1.2/repository/myhost/applications/

MusicStore947749297345Server.jar
/D:/j2sdkee1.2/repository/myhost/applications/

MusicStore947749297345Server.jar
Looking up authenticator...
Binding name:java:comp/env/ejb/MusicCD

that let you know the MusicStore application has been deployed.

Task 3: Edit the MusicClient.java skeleton to obtain the JNDI context, and use this
context to get a reference to the MusicCDHome.

Help for task 3: Obtain the JNDI context by creating a new instance of
javax.naming.InitialContext and storing it in a reference variable of datatype
javax.naming.Context

Task 4: Create a new MusicCD bean with the UPC code given in the skeleton, and set its
fields to the values shown in the skeleton. Or if you have a favorite CD of your own, you can
use that data.

Help for task 4: Use the create() method that takes the UPC code as an argument to
create the bean. Use the accessor and mutator methods defined in the remote interface to
modify the bean's data.

Task 5: Add code to find the MusicCD bean you just created in the database, then print out
the database values of the fields you set in the previous step.

Help for task 5: Create an instance of MusicCDPK, set the upc field to an appropriate value,
and use the findByPrimaryKey() method of the MusicCD home interface to find the
MusicCD bean. When you have a reference to the bean, you can read the data using
accessor methods on that bean.

Task 6: Compile and run your client application.

Help for task 6: Because the client needs to use both the MusicCD bean and the Inventory
bean, you will need to put Inventory.jar and MusicCD.jar in your CLASSPATH in
order to compile. You will also have to make sure that j2ee.jar is in your CLASSPATH,
because that is where the javax.ejb classes are stored.

Task 7: Edit the MusicInventoryClient.java skeleton to obtain the JNDI context, and
use this context to get a reference to the InventoryHome.

Help for task 7: You obtain the JNDI context by creating a new instance of
javax.naming.InitialContext and storing it in a reference variable of datatype
javax.naming.Context.

Task 8: Create a new Inventory bean.

Help for task 8: Use the create() method on the Inventory home interface.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 58

Task 9: Create an instance of MusicData and fill it with information about CDs you want to
insert into the database, then use the Inventory bean's business method to perform this task.

Help for task 9: The addInventory() method of the Inventory bean takes an instance of
MusicData as an argument, and inserts those records into the database.

Task 10: Compile and run your client application.

Help for task 10: Because the client needs to use both the MusicCD bean and the Inventory
bean, you will need to put Inventory.jar and MusicCD.jar in your CLASSPATH in
order to compile. You will also have to make sure that j2ee.jar is in your CLASSPATH,
because that is where the javax.ejb classes are stored.

Exercise 6. How to create EJB clients: Solution
As a solution, both the source code for the client applications and the
MusicStoreClient.jar file, which holds the container-generated stubs and skeletons
and other things needed for a stand-alone client to communicate with the J2EE server, are
provided.

* solution/musicstore/MusicClient.java
* solution/musicstore/MusicInventoryClient.java
* solution/MusicStoreClient.jar

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 59

exercises/Client/solution/musicstore/MusicClient.java
exercises/Client/solution/musicstore/MusicInventoryClient.java
exercises/Client/solution/MusicStoreClient.jar

Section 9. Summary

Further reading and references
There are many resources available on and off the Internet to learn about Enterprise
JavaBeans technology. Below is a sampling of the available Web sites, Sun's documentation
pages for related EJB technologies, and printed books.

developerWorks tutorials and articles

* "Introduction to Enterprise JavaBeans" tutorial
* "Efficient Entity EJB development"
* "What are EJB components?, part 1 , part 2 , and part 3 "
* "Developing enterprise beans with VisualAge for Java"
* "Read all about EJB 2.0" (JavaWorld reprint)
* "Enterprise JavaBeans: Answers to every developer's top questions"

Web sites

The following sites have product information as well as white papers on EJB technology,
Java application servers, and other distributed technologies:

* Sun Microsystems, Inc. EJB vendor list
* Object Management Group, Inc.
* EJB-INTEREST -- EJB mailing list archive
* EJBNow -- a resource for EJB technology developers
* jGuru's EJB technology FAQ

Documentation and specifications

java.sun.com , the Sun Microsystems Web site for Java technology, includes a Products and
APIs page packed with links to Java enterprise-related products, APIs, and general
information, including:

* EJB
* J2EE
* Writing Enterprise Applications with J2EE
* JNDI
* Servlet API
* JDBC API
* Java Transaction API
* Java Transaction Service
* RMI over IIOP compiler

Books

Recent books with Enterprise JavaBeans and distributed computing technology themes
include:

* Monson-Haefel, R. " Enterprise JavaBeans ," second edition. Sebastopol, CA: O'Reilly
& Associates, 2000, ISBN: 1-56592-869-5.

* Roman, E. " Mastering Enterprise JavaBeans and the Java 2 Platform ." New York:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 60

http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/A30BA643DAE8893685256767006CD78A?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/A30BA643DAE8893685256767006CD78A?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/A30BA643DAE8893685256767006CD78A?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/A30BA643DAE8893685256767006CD78A?OpenDocument
http://www-106.ibm.com/developerworks/library/co-ejbmkr/index.html
http://www-106.ibm.com/developerworks/library/co-ejbmkr/index.html
http://www-106.ibm.com/developerworks/library/co-ejbmkr/index.html
http://www-106.ibm.com/developerworks/library/co-ejbmkr/index.html
http://www-106.ibm.com/developerworks/library/what-are-ejbs/part1/index.html?dwzone=java
http://www-106.ibm.com/developerworks/library/what-are-ejbs/part1/index.html?dwzone=java
http://www-106.ibm.com/developerworks/library/what-are-ejbs/part2/index.html?dwzone=java
http://www-106.ibm.com/developerworks/library/what-are-ejbs/part2/index.html?dwzone=java
http://www-106.ibm.com/developerworks/library/what-are-ejbs/part3/index.html
http://www-106.ibm.com/developerworks/library/what-are-ejbs/part3/index.html
http://www-106.ibm.com/developerworks/library/developing-ejbs/index.html
http://www-106.ibm.com/developerworks/library/developing-ejbs/index.html
http://www-106.ibm.com/developerworks/library/developing-ejbs/index.html
http://www-106.ibm.com/developerworks/library/developing-ejbs/index.html
http://www-106.ibm.com/developerworks/library/developing-ejbs/index.html
http://www-106.ibm.com/developerworks/library/developing-ejbs/index.html
http://www-106.ibm.com/developerworks/library/developing-ejbs/index.html
http://www-106.ibm.com/developerworks/library/jw-ejb20/index.html
http://www-106.ibm.com/developerworks/library/jw-ejb20/index.html
http://www-106.ibm.com/developerworks/library/jw-ejb20/index.html
http://www-106.ibm.com/developerworks/library/jw-ejb20/index.html
http://www-106.ibm.com/developerworks/library/jw-ejb20/index.html
http://www-106.ibm.com/developerworks/library/ejbsun/index.html
http://www-106.ibm.com/developerworks/library/ejbsun/index.html
http://www-106.ibm.com/developerworks/library/ejbsun/index.html
http://www-106.ibm.com/developerworks/library/ejbsun/index.html
http://www-106.ibm.com/developerworks/library/ejbsun/index.html
http://www-106.ibm.com/developerworks/library/ejbsun/index.html
http://www-106.ibm.com/developerworks/library/ejbsun/index.html
http://www-106.ibm.com/developerworks/library/ejbsun/index.html
 http://java.sun.com/products/ejb/tools1.html
 http://java.sun.com/products/ejb/tools1.html
 http://java.sun.com/products/ejb/tools1.html
 http://java.sun.com/products/ejb/tools1.html
 http://java.sun.com/products/ejb/tools1.html
 http://java.sun.com/products/ejb/tools1.html
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://archives.java.sun.com/archives/ejb-interest.html
http://archives.java.sun.com/archives/ejb-interest.html
http://archives.java.sun.com/archives/ejb-interest.html
http://archives.java.sun.com/archives/ejb-interest.html
http://archives.java.sun.com/archives/ejb-interest.html
http://archives.java.sun.com/archives/ejb-interest.html
http://www.ejbnow.com
http://www.ejbnow.com
http://www.ejbnow.com
http://www.ejbnow.com
http://www.ejbnow.com
http://www.ejbnow.com
http://www.ejbnow.com
http://www.ejbnow.com
http://www.jguru.com/faq/EJB
http://www.jguru.com/faq/EJB
http://www.jguru.com/faq/EJB
http://www.jguru.com/faq/EJB
http://java.sun.com
http://java.sun.com/products/
http://java.sun.com/products/
http://java.sun.com/products/
http://java.sun.com/products/ejb/
http://java.sun.com/j2ee/
http://developer.java.sun.com/developer/onlineTraining/J2EE/Intro/
http://developer.java.sun.com/developer/onlineTraining/J2EE/Intro/
http://developer.java.sun.com/developer/onlineTraining/J2EE/Intro/
http://developer.java.sun.com/developer/onlineTraining/J2EE/Intro/
http://developer.java.sun.com/developer/onlineTraining/J2EE/Intro/
http://java.sun.com/products/jndi/
http://java.sun.com/products/servlet/
http://java.sun.com/products/servlet/
http://java.sun.com/products/jdbc/
http://java.sun.com/products/jdbc/
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jts/
http://java.sun.com/products/jts/
http://java.sun.com/products/jts/
http://java.sun.com/products/rmi-iiop/
http://java.sun.com/products/rmi-iiop/
http://java.sun.com/products/rmi-iiop/
http://java.sun.com/products/rmi-iiop/
http://www.amazon.com/exec/obidos/ASIN/1565928695/o/qid=982945435/sr=8-1/ref=aps_sr_b_1_1/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/1565928695/o/qid=982945435/sr=8-1/ref=aps_sr_b_1_1/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/0471332291/qid=982945499/sr=1-1/ref=sc_b_1/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/0471332291/qid=982945499/sr=1-1/ref=sc_b_1/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/0471332291/qid=982945499/sr=1-1/ref=sc_b_1/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/0471332291/qid=982945499/sr=1-1/ref=sc_b_1/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/0471332291/qid=982945499/sr=1-1/ref=sc_b_1/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/0471332291/qid=982945499/sr=1-1/ref=sc_b_1/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/0471332291/qid=982945499/sr=1-1/ref=sc_b_1/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/0471332291/qid=982945499/sr=1-1/ref=sc_b_1/107-5647493-8658115

John Wiley & Sons, 1999, ISBN: 0-471-33229-1.
* Farley, J. " Java Distributed Computing ." Sebastopol, CA: O'Reilly & Associates, 1998,

ISBN: 1-56592-206-9.
* David Flanagan, et al. " Java Enterprise in a Nutshell : A Desktop Quick Reference ."

New York: O'Reilly & Associates; ISBN: 1-56592-483-5.
* Orfali, R., Harkey, D., and Edwards, J. " The Client/Server Survival Guide, 3rd Ed. "

New York: John Wiley & Sons, 1999, ISBN: 0-471-31615-6.

Miscellaneous

Database-related issues are discussed in Chris Date's classic text:

* Date, C. " An Introduction to Database Systems, 7th Ed. " Reading, MA:
Addison-Wesley, 1999, ISBN: 0-201-38590-2.

Feedback
Please let us know whether this tutorial was helpful to you and how we could make it better.
We'd also like to hear about other tutorial topics you'd like to see covered. Thanks!

For questions about the content of this tutorial, contact the authors Richard Monson-Haefel (
rmh@jguru.com) or Tim Rohaly (rohaly@jguru.com).

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The Toot-O-Matic tool is a short Java program that uses XSLT stylesheets to
convert the XML source into a number of HTML pages, a zip file, JPEG heading graphics,
and PDF files. Our ability to generate multiple text and binary formats from a single source
file illustrates the power and flexibility of XML.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Enterprise JavaBeans Fundamentals Page 61

http://www.amazon.com/exec/obidos/ASIN/1565922069/qid=982945641/sr=1-2/ref=sc_b_2/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/1565922069/qid=982945641/sr=1-2/ref=sc_b_2/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/1565922069/qid=982945641/sr=1-2/ref=sc_b_2/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/1565924835/qid=982945801/sr=1-6/ref=sc_b_6/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/1565924835/qid=982945801/sr=1-6/ref=sc_b_6/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/1565924835/qid=982945801/sr=1-6/ref=sc_b_6/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/1565924835/qid=982945801/sr=1-6/ref=sc_b_6/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/1565924835/qid=982945801/sr=1-6/ref=sc_b_6/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/1565924835/qid=982945801/sr=1-6/ref=sc_b_6/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/1565924835/qid=982945801/sr=1-6/ref=sc_b_6/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/1565924835/qid=982945801/sr=1-6/ref=sc_b_6/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/1565924835/qid=982945801/sr=1-6/ref=sc_b_6/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/1565924835/qid=982945801/sr=1-6/ref=sc_b_6/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/1565924835/qid=982945801/sr=1-6/ref=sc_b_6/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/1565924835/qid=982945801/sr=1-6/ref=sc_b_6/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/1565924835/qid=982945801/sr=1-6/ref=sc_b_6/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/1565924835/qid=982945801/sr=1-6/ref=sc_b_6/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/1565924835/qid=982945801/sr=1-6/ref=sc_b_6/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/1565924835/qid=982945801/sr=1-6/ref=sc_b_6/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/0201385902/qid=982946178/sr=1-1/ref=sc_b_1/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/0201385902/qid=982946178/sr=1-1/ref=sc_b_1/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/0201385902/qid=982946178/sr=1-1/ref=sc_b_1/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/0201385902/qid=982946178/sr=1-1/ref=sc_b_1/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/0201385902/qid=982946178/sr=1-1/ref=sc_b_1/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/0201385902/qid=982946178/sr=1-1/ref=sc_b_1/107-5647493-8658115
http://www.amazon.com/exec/obidos/ASIN/0201385902/qid=982946178/sr=1-1/ref=sc_b_1/107-5647493-8658115
mailto:rmh@jguru.com
mailto:rohaly@jguru.com

